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1

Function Reference

Uncertain Elements (p. 1-3) Functions for building uncertain
elements

Uncertain Matrices and Systems
(p. 1-4)

Functions for building uncertain
matrices and systems

Manipulation of Uncertain Models
(p. 1-5)

Functions for transforming and
analyzing uncertain models

Interconnection of Uncertain Models
(p. 1-6)

Functions for connecting uncertain
models

Model Order Reduction (p. 1-7) Functions for generating low-order
approximations to plant and
controller models

Robustness andWorst-Case Analysis
(p. 1-8)

Functions for characterizing
system robustness and worst-case
performance

Robustness Analysis for
Parameter-Dependent Systems
(P-Systems) (p. 1-10)

Functions for analyzing P-Systems

Controller Synthesis and Tuning
(p. 1-11)

H∞ control design functions

µ-Synthesis (p. 1-12) Structured singular value control
design functions

Sampled-Data Systems (p. 1-13) Functions for analyzing
sampled-data systems

Gain Scheduling (p. 1-14) Functions for synthesizing
gain-scheduled controllers



1 Function Reference

Frequency-Response Data (FRD)
Models (p. 1-15)

Functions for operating on FRD
models

Supporting Utilities (p. 1-16) Additional functions for working
with systems containing uncertain
elements

LMIs (p. 1-17) Functions for building and
solving systems of Linear Matrix
Inequalities

Simulink (p. 1-20) Functions for using with Simulink
models
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Uncertain Elements

Uncertain Elements
ucomplex Create uncertain complex parameter

ucomplexm Create uncertain complex matrix

udyn Create unstructured uncertain
dynamic system object

ultidyn Create uncertain linear
time-invariant object

ureal Create uncertain real parameter
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1 Function Reference

Uncertain Matrices and Systems
diag Diagonalize vector of uncertain

matrices and systems

randatom Generate random uncertain atom
objects

randumat Generate random uncertain umat
objects

randuss Generate stable, random uss objects

ufrd ncertain frequency response data

umat Create uncertain matrix

uss Specify uncertain models or convert
LTI model to uncertain model
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Manipulation of Uncertain Models

Manipulation of Uncertain Models
actual2normalized

gridureal Grid ureal parameters uniformly
over their range

isuncertain Check whether argument is
uncertain class type

lftdata Decompose uncertain objects into
fixed normalized and fixed uncertain
parts

normalized2actual Convert value for atom in normalized
coordinates to corresponding actual
value

repmat Replicate and tile array

simplify Simplify representation of uncertain
object

squeeze Remove singleton dimensions for
umat objects

usample Generate random samples of
uncertain variables

uss/ssbal Scale state/uncertainty while
preserving uncertain input/output
map of uncertain system

usubs Substitute given values for uncertain
elements of uncertain objects
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1 Function Reference

Interconnection of Uncertain Models
iconnect Create empty iconnect

(interconnection) objects

icsignal Create icsignal object of specified
dimension

imp2exp Convert implicit linear relationship
to explicit input-output relation

stack Construct array by stacking
uncertain matrices, models, or
arrays

sysic Build interconnections of certain and
uncertain matrices and systems
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Model Order Reduction

Model Order Reduction
balancmr Balanced model truncation via

square root method

bstmr Balanced stochastic model
truncation (BST) via Schur method

hankelmr Hankel minimum degree
approximation (MDA) without
balancing

hankelsv Compute Hankel singular
values for stable/unstable or
continuous/discrete system

imp2ss System realization via Hankel
singular value decomposition

modreal Modal form realization and
projection

ncfmr Balanced model truncation for
normalized coprime factors

reduce Simplified access to Hankel singular
value based model reduction
functions

schurmr Balanced model truncation via Schur
method

slowfast Slow and fast modes decomposition
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1 Function Reference

Robustness and Worst-Case Analysis
cpmargin Coprime stability margin of

plant-controller feedback loop

gapmetric Compute upper bounds on
Vinnicombe gap and nugap distances
between two systems

loopmargin Stability margin analysis of LTI and
Simulink® feedback loops

loopsens Sensitivity functions of
plant-controller feedback loop

mussv Compute bounds on structured
singular value (µ)

mussvextract Extract muinfo structure returned
by mussv

ncfmargin Calculate normalized coprime
stability margin of plant-controller
feedback loop

popov Perform Popov robust stability test

robopt ptions object for use with robuststab
and robustperf

robustperf Robust performance margin of
uncertain multivariable system

robuststab Calculate robust stability margins of
uncertain multivariable system

wcgain Calculate bounds on worst-case gain
of uncertain system

wcgainplot Graphical worst-case gain analysis

wcgopt ptions object for use with wcgain,
wcsens, and wcmargin

wcmargin Worst-case disk stability margins of
uncertain feedback loops
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Robustness and Worst-Case Analysis

wcnorm Worst-case norm of uncertain matrix

wcsens Calculate worst-case sensitivity and
complementary sensitivity functions
of plant-controller feedback loop
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1 Function Reference

Robustness Analysis for Parameter-Dependent Systems
(P-Systems)

aff2pol Convert affine parameter-dependent
models to polytopic models

decay Quadratic decay rate of polytopic or
affine P-systems

ispsys True for parameter-dependent
systems

pdlstab Assess robust stability of polytopic
or parameter-dependent system

pdsimul Time response of
parameter-dependent system
along given parameter trajectory

polydec Compute polytopic coordinates with
respect to box corners

psinfo Inquire about polytopic or
parameter-dependent systems
created with psys

pvec Specify range and rate of variation
of uncertain or time-varying
parameters

pvinfo Describe parameter vector specified
with pvec

quadperf Compute quadratic H performance
of polytopic or parameter-dependent
system

quadstab Quadratic stability of polytopic or
affine parameter-dependent systems
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Controller Synthesis and Tuning

Controller Synthesis and Tuning
augw State-space or transfer function

plant augmentation for use in
weighted mixed-sensitivity H and H
loopshaping design

h2hinfsyn Mixed H/H synthesis with pole
placement constraints

h2syn H control synthesis for LTI plant

hinfstruct H tuning of fixed-structure
controllers

hinfstruct H tuning of fixed-structure
controllers

hinfsyn Compute H optimal controller for
LTI plant

loopsyn H optimal controller synthesis for
LTI plant

looptune Tune MIMO control systems

loopview Graphically analyze MIMO feedback
loops

ltrsyn LQG loop transfer-function recovery
(LTR) control synthesis

mixsyn H mixed-sensitivity synthesis
method for robust control
loopshaping design

mkfilter Generate Bessel, Butterworth,
Chebyshev, or RC filter

ncfsyn Loop shaping design using
Glover-McFarlane method

systune Tune fixed-structure control systems

viewSpec View tuning requirements; validate
design against requirements
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µ-Synthesis
cmsclsyn Approximately solve

constant-matrix, upper bound
µ-synthesis problem

dkitopt Create options object for use with
dksyn

dksyn Robust controller design using
µ-synthesis

drawmag Mouse-based tool for sketching and
fitting

fitfrd Fit frequency response data with
state-space model

fitmagfrd Fit frequency response magnitude
data with minimum-phase
state-space model using
log-Chebychev magnitude design

genphase Fit single-input/single-output
magnitude data with real, rational,
minimum-phase transfer function
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Sampled-Data Systems

Sampled-Data Systems

sdhinfnorm Compute L norm of continuous-time
system in feedback with
discrete-time system

sdhinfsyn Compute H controller for
sampled-data system

sdlsim Time response of sampled-data
feedback system
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Gain Scheduling

hinfgs Synthesis of gain-scheduled H
controllers
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Frequency-Response Data (FRD) Models

Frequency-Response Data (FRD) Models

frd/loglog Log-log scale plot of frd objects

frd/rcond LAPACK reciprocal condition
estimator of frd object

frd/schur Schur decomposition of frd object

frd/semilogx Semilog scale plot of frd object

frd/svd Singular value decomposition of frd
object
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Supporting Utilities
bilin Multivariable bilinear transform of

frequency (s or z)

dmplot Interpret disk gain and phase
margins

mktito Partition LTI system into
two-input/two-output system

sectf State-space sector bilinear
transformation

skewdec Form skew-symmetric matrix

symdec Form symmetric matrix
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LMIs

LMIs

LMI Systems (p. 1-17)

LMI Characteristics (p. 1-17)

LMI Solvers (p. 1-18)

Validation of Results (p. 1-18)

Modification of Systems of LMIs
(p. 1-18)

LMI Systems

getlmis Internal description of LMI system

lmiedit Specify or display systems of LMIs
as MATLAB® expressions

lmiterm Specify term content of LMIs

lmivar Specify matrix variables in LMI
problem

newlmi Attach identifying tag to LMIs

setlmis Initialize description of LMI system

LMI Characteristics

dec2mat Given values of decision variables,
derive corresponding values of
matrix variables

decinfo Describe how entries of matrix
variable X relate to decision
variables

decnbr Total number of decision variables
in system of LMIs

lmiinfo Information about variables and
term content of LMIs
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lminbr Return number of LMIs in LMI
system

mat2dec Extract vector of decision variables
from matrix variable values

matnbr Number of matrix variables in
system of LMIs

LMI Solvers

defcx Help specify cTx objectives for mincx
solver

feasp Compute solution to given system of
LMIs

gevp Generalized eigenvalue
minimization under LMI constraints

mincx Minimize linear objective under LMI
constraints

Validation of Results

evallmi Given particular instance of decision
variables, evaluate all variable
terms in system of LMIs

showlmi Return left and right sides of LMI
after evaluation of all variable terms

Modification of Systems of LMIs

bilin Multivariable bilinear transform of
frequency (s or z)

dmplot Interpret disk gain and phase
margins
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LMIs

mktito Partition LTI system into
two-input/two-output system

sectf State-space sector bilinear
transformation

skewdec Form skew-symmetric matrix

symdec Form symmetric matrix
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1 Function Reference

Simulink

ufind Find uncertain variables in Simulink
model

ulinearize Linearize Simulink model with
Uncertain State Space block

1-20
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Class Reference

TuningGoal.LoopShape
TuningGoal.Margins
TuningGoal.Gain
TuningGoal.Poles
TuningGoal.StableController
TuningGoal.Tracking
TuningGoal.Variance
TuningGoal.WeightedGain
TuningGoal.WeightedVariance



TuningGoal.LoopShape

Purpose Target loop shape for control system tuning

Description Use the TuningGoal.LoopShape object to specify a target gain
profile (gain as a function of frequency) of an open-loop response.
The TuningGoal.LoopShape requirement constrains the open-loop
point-to-point response at a specified location in your control system.
Use this requirement for control system tuning with tuning commands
such as systune or looptune.

For multi-input, multi-output (MIMO) control systems, values in the
gain profile greater than 1 are interpreted as minimum performance
requirements. Such values are lower bounds on the smallest singular
value of the open-loop response. Gain profile values less than one are
interpreted as minimum roll-off requirements, upper bounds on the
largest singular value of the open-loop response. For more information
about singular values, see sigma.

Construction Req = TuningGoal.LoopShape(loopid,loopgain) creates a tuning
requirement, Req, for shaping the open-loop response of the feedback
loop identified by loopid. The magnitude of the single-input,
single-output (SISO) transfer function loopgain specifies the target
open-loop gain profile. You can specify the target gain profile (maximum
gain across the I/O pair) as a smooth transfer function, or sketch a
piecewise error profile using an frd model.

Req = TuningGoal.LoopShape(loopid,loopgain,crosstol) further
specifies a tolerance crosstol on the location of the crossover
frequency. crosstol expresses the tolerance in decades. When you
omit crosstol, the tuning requirement uses a default value of 0.1
decades. You can increase crosstol when tuning MIMO control
systems. Doing so allows more widely varying crossover frequencies
for different loops in the system.

Input Arguments

loopid

Feedback loop whose open-loop response shape is constrained,
specified as a string or cell-array of strings that identify one
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TuningGoal.LoopShape

or more loop opening sites in the control system to tune. A
loop-opening site can be:

• If you are tuning a control system specified as a genss model
in MATLAB, any feedback channel in a loopswitch block in
the model. In this case, loopid contains the names of one or
more feedback loops, as specified in the loopID property of a
loopswitch block in the control system model.

• If you are using looptune to tune a system that includes a plant
model and controller model, any control or measurement signal.
A control signal is a signal that is an output of the controller
model and an input of the plant model. A measurement signal
is a signal that is an output of the plant model and an input of
the controller model. In this case, loopid contains the names
of one or more measurement or control signals.

• If you are tuning a Simulink model of a control system using
the slTunable interface, any Controls, Measurements, or
Switches signal in the slTunable interface. In this case,
loopid contains the names of one ormore signals that you added
to the slTunable interface using slTunable.addControl,
slTunable.addMeasurement, or slTunable.addSwitch.

The loop shape requirement applies to the point-to-point open-loop
transfer function at the specified loop-opening site. That transfer
function is the open-loop response obtained by injecting signals
at the loop-opening site and measuring the return signals at the
same point.

If loopid is a cell array of loop-opening sites, then the loop shape
requirement applies to the MIMO open-loop transfer function.

loopgain

Target open-loop gain profile as a function of frequency.

You can specify loopgain as a smooth SISO transfer function
(tf, zpk, or ss model). Alternatively, you can sketch a piecewise
gain profile using a frd model. When you do so, the software
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TuningGoal.LoopShape

automatically maps the gain profile you specify to a zpk model
whose magnitude approximates the desired gain profile. Use
viewSpec(Req) to plot the magnitude of that zpk model.

For multi-input, multi-output (MIMO) control systems, values
in the gain profile greater than 1 are interpreted as minimum
performance requirements. These values are lower bounds on the
smallest singular value of L. Gain profile values less than one
are interpreted as minimum roll-off requirements, upper bounds
on the largest singular value of L. For more information about
singular values, see sigma.

crosstol

Tolerance in the location of crossover frequency, in decades.
crosstol is a scalar value. Increasing crosstol increases the
likelihood that the tuning algorithm can enforce the target loop
shape for all loops in a MIMO control system.

Properties LoopTransfer

Feedback loop whose open-loop response shape is constrained,
specified as a string or cell-array of strings that identify one or
more loop opening sites in the control system to tune.

The value of the LoopTransfer property is set by the loopid
input argument when you create the TuningGoal.LoopShape
requirement.

LoopGain

Target loop shape as a function of frequency, expressed as a SISO
zpkmodel.

The software automatically maps the input argument loopgain
onto a zpk model. The magnitude of this zpk model approximates
the desired gain profile. Use viewSpec(Req) to plot the magnitude
of the zpk model LoopGain.

CrossTol

Tolerance on gain crossover frequency, in decades.
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TuningGoal.LoopShape

The initial value of CrossTol is set by the crosstol input when
you create the requirement object.

Default: 0.1

LoopScaling

Toggle for automatically scaling loop signals, specified as 'on' or
'off'.

In multi-loop or MIMO control systems, the feedback channels
are automatically rescaled to equalize the off-diagonal terms
in the open-loop transfer function (loop interaction terms). Set
LoopScaling to 'off' to disable such scaling and shape the
unscaled open-loop response.

Default: 'on'

Focus

Frequency band in which tuning requirement is enforced,
specified as a row vector of the form [min,max].

Set the Focus property to limit enforcement of the requirement
to a particular frequency band. For example, suppose Req is a
requirement that you want to apply only between 1 and 100
rad/s. To restrict the requirement to this band, use the following
command:

Req.Focus = [1,100];

Default: [0,Inf] for continuous time; [0,pi/Ts] for discrete
time, where Ts is the model sampling time.

Models

Models to which the tuning requirement applies, specified as
a vector of indices.
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TuningGoal.LoopShape

Use the Models property when you are tuning an array of control
system models with systune and you want to enforce the tuning
requirement only for a subset of the models in the array. For
example, suppose Req is a tuning requirement that you want to
apply only to the second, third, and fourth models in a model
array that you pass to systune. To restrict enforcement of the
requirement, use the following command:

Req.Models = 2:4;

When Models = NaN, the tuning requirement applies to all
models.

Default: NaN

Openings

Feedback loops to open when evaluating the requirement,
specified as a cell array of strings that identify loop-opening sites.
A loop-opening site can be:

• If you are tuning a control system specified as a genss model
in MATLAB, any feedback channel in a loopswitch block in
the model. In this case, set Openings to a cell array containing
the names of one or more loop-opening sites, as specified in the
loopID property of a loopswitch block in the control system
model.

• If you are using looptune to tune a system that includes a plant
model and controller model, any control or measurement signal.
A control signal is a signal that is an output of the controller
model and an input of the plant model. A measurement signal
is a signal that is an output of the plant model and an input of
the controller model. In this case, set Openings to a cell array
containing the names of one or more measurement or control
signals.

• If you are tuning a Simulink model of a control system using
the slTunable interface, anyControls, Measurements, or
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TuningGoal.LoopShape

Switches signal in the slTunable interface. In this case,
set Openings to a cell array containing the names of one or
more signals that you added to the slTunable interface using
slTunable.addControl, slTunable.addMeasurement, or
slTunable.addSwitch.

If you do not specify any loop openings, the requirement is
evaluated with all loops closed.

Default: {}

Name

Name of the requirement object, specified as a string.

For example, if Req is a requirement,

Req.Name = 'TrackingReq';

Default: []

Algorithms When you tune a control system using a TuningGoal object to specify
a tuning requirement, the software converts the requirement into a
normalized scalar value f(x), where x is the vector of free (tunable)
parameters in the control system. The software then adjusts the
parameter values to minimize f(x), or to drive f(x) below 1 is the tuning
requirement is a hard constraint.

For the TuningGoal.LoopShape requirement, f(x) is given by:

f x
W S
W T

S

T
  


.

S = D–1[I – L(s,x)]–1D is the scaled sensitivity function.

L(s,x) is the open-loop response being shaped.

D is an automatically-computed loop scaling factor. (If the LoopScaling
property is set to 'off', then D = I.)
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TuningGoal.LoopShape

T = S – I is the complementary sensitivity function.

WS and WT are weighting functions derived from the specified loop
shape.

Examples Loop Shape and Crossover Tolerance

Create a target gain profile requirement of integral action, gain
crossover at 1, and roll-off of 40 dB/decade for the following control
system.

�
�

�������� �
�

	

The requirement should apply to the open-loop response measured at
the loopswitch block X. Specify a crossover tolerance of 0.5 decades.

Use an frd model to sketch the target loop shape.

LS = frd([100 1 0.0001],[0.01 1 100]);
Req = TuningGoal.LoopShape('X',LS,0.5);

The software converts LS into a smooth function of frequency that
approximates the piecewise specified requirement. Display the
requirement using viewSpec.

viewSpec(Req)
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TuningGoal.LoopShape

The red and green regions indicate the bounds for the sensitivity S
= 1/(1-G*C) and complementary sensitivity T = (G*C)/(1-G*C),
respectively. When you use viewSpec(Req,CL) to validate a tuned
closed-loop model of this control system, CL, the tuned values of S and T
are also plotted.

Specify Different Loop Shapes for Multiple Loops

Create separate loop shape requirements for the inner and outer loops
of the following control system.
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TuningGoal.LoopShape

�
�

�

�
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��

For the inner loop, specify a loop shape with integral action, gain
crossover at 1, and roll-off of 40 dB/decade. Additionally, specify that
this loop shape requirement should be enforced with the outer loop open.

LS2 = frd([100 1 0.0001],[0.01 1 100]);
Req2 = TuningGoal.LoopShape('X2',LS2);
Req2.Openings = 'X1';

Specifying 'X2' for the loopid specifies that Req2 applies to the
point-to point open-loop transfer function at the loop opening location
X2. Setting Req2.Openings specifies that the loop switch at X1 is open
when Req2 is enforced.

For the outer loop, specify a loop shape with of integral action, gain
crossover at 0.1, and roll-off of 20 dB/decade.

LS1 = frd([10 1 0.01],[0.01 0.1 10]);
Req1 = TuningGoal.LoopShape('X1',LS1);

Specifying 'X1' for the loopid specifies that Req1 applies to the
point-to point open-loop transfer function at the loop opening location
X1. You do not have to set Req1.Openings, because this loop shape is
enforced with the inner loop closed.

You may need to tune the control system with both loop shaping
requirements Req1 and Req2. To do so, use both requirements as inputs
to the tuning command. For example, suppose CL0 is a tunable genss
model of the closed-loop control system. In that case, the following
command tunes the control system to both requirements.
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TuningGoal.LoopShape

[CL,fSoft] = systune(CL0,[Req1,Req2]);

Loop Shape for Tuning Simulink Model

Create a loop shape requirement for the loop involving 'q' in the
following control system, which is the Simulink model rct_airframe2.
Specify that the open-loop requirement is enforced with the loop
involving 'az' open.

Open the model.

open_system('rct_airframe2')

Create a loop shape requirement that enforces integral action with a
crossover a 2 rad/s for the 'q' loop. This loop shape corresponds to
a loop shape of 2/s.

s = tf('s');
shape = 2/s;
Req = TuningGoal.LoopShape('q',shape);

Specify the location at which to open an additional loop when enforcing
the requirement.
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TuningGoal.LoopShape

Req.Openings = 'az';

To use this requirement to tune the Simulink model, create an
slTunable interface to the model.

ST0 = slTunable('rct_airframe2','MIMO Controller');

Designate both az and q as potential loop-opening sites in the
slTunable interface.

STO.Openings = {'az','q'};

This command makes q available as an open-loop analysis location.
The command also allows the tuning requirement to be enforced with
the loop open at az.

You can now tune the model using Req and any other tuning
requirements. For example:

[ST,fSoft] = systune(ST0,Req);

See Also slTunable.looptune | slTunable.systune | looptune | systune |
viewSpec | TuningGoal.Tracking | TuningGoal.Gain | slTunable |
frd

How To • “Specifying Design Requirements for systune”

• “Performance and Robustness Specifications for looptune”

• “Using Design Requirement Objects”
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Purpose Stability margin requirement for control system tuning

Description Use the TuningGoal.Margins requirement object to specify a tuning
requirement for the gain and phase margins of a SISO or MIMO
feedback loop. You can use this requirement for validating a tuned
control system with viewSpec. You can also use the requirement for
control system tuning with tuning commands such as systune or
looptune.

After you create a requirement object, you can further configure the
tuning requirement by setting “Properties” on page 2-15 of the object.

Construction Req = TuningGoal.Margins(loopid,gainmargin,phasemargin)
creates a tuning requirement Req that specifies the minimum gain and
phase margins of the feedback loop identified by loopid.

Input Arguments

loopid

Feedback loop to which the minimum gain and phase margins
apply, specified as a string or cell-array of strings that identify
one or more loop opening sites in the control system to tune. A
loop-opening site can be:

• If you are tuning a control system specified as a genss model
in MATLAB, any feedback channel in a loopswitch block in
the model. In this case, loopid contains the names of one or
more feedback loops, as specified in the loopID property of a
loopswitch block in the control system model.

• If you are using looptune to tune a system that includes a plant
model and controller model, any control or measurement signal.
A control signal is a signal that is an output of the controller
model and an input of the plant model. A measurement signal
is a signal that is an output of the plant model and an input of
the controller model. In this case, loopid contains the names
of one or more measurement or control signals.
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• If you are tuning a Simulink model of a control system using
the slTunable interface, any Controls, Measurements, or
Switches signal in the slTunable interface. In this case,
loopid contains the names of one ormore signals that you added
to the slTunable interface using slTunable.addControl,
slTunable.addMeasurement, or slTunable.addSwitch.

The margin requirements apply to the point-to-point open-loop
transfer function at the specified loop-opening site. That transfer
function is the open-loop response obtained by injecting signals
at the loop-opening site and measuring the return signals at the
same point.

If loopid is a cell array of loop-opening sites, then the margin
requirement applies to the MIMO open-loop transfer function.

gainmargin

Required minimum gain margin for the feedback loop, specified
as a scalar value in dB.

For MIMO feedback loops, the gain margin is based upon the
notion of disk margins, which guarantee stability for concurrent
gain and phase variations of ±gainmargin and ±phasemargin
in all feedback channels. See loopmargin for more information
about disk margins.

phasemargin

Required minimum phase margin for the feedback loop, specified
as a scalar value in degrees.

For MIMO feedback loops, the phase margin is based upon the
notion of disk margins, which guarantee stability for concurrent
gain and phase variations of ±gainmargin and ±phasemargin
in all feedback channels. See loopmargin for more information
about disk margins.
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Properties LoopTransfer

Feedback loop to which the minimum gain and phase margins
apply, specified as a string or cell-array of strings that identify
one or more loop opening sites in the control system to tune.

The value of the LoopTransfer property is set by the loopid
input argument when you create the TuningGoal.Margins
requirement.

GainMargin

Required minimum gain margin for the feedback loop, specified
as a scalar value in dB.

The value of the GainMargin property is set by the gainmargin
input argument when you create the TuningGoal.Margins
requirement.

PhaseMargin

Required minimum phase margin for the feedback loop, specified
as a scalar value in degrees.

The value of the PhaseMargin property is set by the phasemargin
input argument when you create the TuningGoal.Margins
requirement.

Focus

Frequency band in which tuning requirement is enforced,
specified as a row vector of the form [min,max].

Set the Focus property to limit enforcement of the requirement
to a particular frequency band. For best results with stability
margin requirements, pick a frequency band extending about
one decade on each side of the gain crossover frequencies. For
example, suppose Req is a TuningGoal.Margins requirement
that you are using to tune a system with approximately 10 rad/s
bandwidth. To limit the enforcement of the requirement, use the
following command:

Req.Focus = [1,100];
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Default: [0,Inf] for continuous time; [0,pi/Ts] for discrete
time, where Ts is the model sampling time.

Models

Models to which the tuning requirement applies, specified as
a vector of indices.

Use the Models property when you are tuning an array of control
system models with systune and you want to enforce the tuning
requirement only for a subset of the models in the array. For
example, suppose Req is a tuning requirement that you want to
apply only to the second, third, and fourth models in a model
array that you pass to systune. To restrict enforcement of the
requirement, use the following command:

Req.Models = 2:4;

When Models = NaN, the tuning requirement applies to all
models.

Default: NaN

Name

Name of the requirement object, specified as a string.

For example, if Req is a requirement,

Req.Name = 'TrackingReq';

Default: []

Openings

Feedback loops to open when evaluating the requirement,
specified as a cell array of strings that identify loop-opening sites.
A loop-opening site can be:
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• If you are tuning a control system specified as a genss model
in MATLAB, any feedback channel in a loopswitch block in
the model. In this case, set Openings to a cell array containing
the names of one or more loop-opening sites, as specified in the
loopID property of a loopswitch block in the control system
model.

• If you are using looptune to tune a system that includes a plant
model and controller model, any control or measurement signal.
A control signal is a signal that is an output of the controller
model and an input of the plant model. A measurement signal
is a signal that is an output of the plant model and an input of
the controller model. In this case, set Openings to a cell array
containing the names of one or more measurement or control
signals.

• If you are tuning a Simulink model of a control system using
the slTunable interface, anyControls, Measurements, or
Switches signal in the slTunable interface. In this case,
set Openings to a cell array containing the names of one or
more signals that you added to the slTunable interface using
slTunable.addControl, slTunable.addMeasurement, or
slTunable.addSwitch.

If you do not specify any loop openings, the requirement is
evaluated with all loops closed.

Default: {}

Algorithms When you tune a control system using a TuningGoal object to specify
a tuning requirement, the software converts the requirement into a
normalized scalar value f(x), where x is the vector of free (tunable)
parameters in the control system. The software then adjusts the
parameter values to minimize f(x), or to drive f(x) below 1 is the tuning
requirement is a hard constraint.

For the TuningGoal.Margins requirement, f(x) is given by:
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f x S I    2  .

S = D–1[I – L(s,x)]–1D is the scaled sensitivity function.

L(s,x) is the open-loop response being shaped.

D is an automatically-computed loop scaling factor.

α is a scalar parameter computed from the specified gain and phase
margin.

Examples SISO Margin Requirement Evaluated with Additional Loop
Opening

Create a requirement that sets a minimum gain margin of 5 dB and a
minimum phase margin of 40 degrees for the inner loop of the following
control system.

�
�

�
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Create a model of the system by specifying and connecting the numeric
plant models G1 and G2, the tunable controllers C1, and the loopswitch
blocks X1 and X2 that mark potential loop-opening sites.

G1 = tf(10,[1 10]);
G2 = tf([1 2],[1 0.2 10]);
C1 = ltiblock.pid('C','pi');
C2 = ltiblock.gain('G',1);
X1 = loopswitch('X1');
X2 = loopswitch('X2');
T = feedback(G1*feedback(G2*C2,X2)*C1,X1);
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Create a tuning requirement object that specifies a minimum gain
margin of 5 dB and a minimum phase margin of 40 degrees for the
inner loop.

Req = TuningGoal.Margins('X2',5,40);

This requirement imposes the specified stability margins on the
feedback loop identified by the loopswitch channel 'X2'.

Specify that these margins are evaluated with the outer loop of the
control system open.

Req.Openings = {'X1'};

Adding 'X1' to the Openings property of the tuning requirements
object ensures that systune evaluates the requirement with the loop
open at that location.

Use systune to tune the free parameters of T to meet the tuning
requirement specified by Req. You can then use viewSpec to validate
the tuned control system against the requirement.

MIMO Margin Requirement in Frequency Band

Create a requirement that sets minimum gain and phase margins for
the MIMO loop defined by three loop-opening sites in a control system
to tune.

The requirement sets a minimum gain margin of 10 dB and a minimum
phase margin of 40 degrees, within the band between 0.1 and 10 rad/s.

Req = TuningGoal.Margins({'r','theta','phi'},10,40);

The names 'r', 'theta', and 'phi' must specify valid loop-opening
sites in the control system that you are tuning.

Limit the requirement to the frequency band between 0.1 and 10 rad/s.

Req.Focus = [0.1 10];
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See Also slTunable.looptune | looptune | systune | slTunable.systune |
viewSpec | evalSpec

How To • “Specifying Design Requirements for systune”

• “Performance and Robustness Specifications for looptune”

• “Using Design Requirement Objects”
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Purpose Gain constraint for control system tuning

Description Use the TuningGoal.Gain object to specify a constraint that limits the
gain from a specified input to a specified output. Use this requirement
for control system tuning with tuning commands such as systune or
looptune.

When you use a TuningGoal.Gain requirement, the software attempts
to tune the system so that the gain from the specified input to the
specified output does not exceed the specified value. By default, the
constraint is applied with the loop closed. To apply the constraint to an
open-loop response, use the Openings property of the TuningGoal.Gain
object.

You can use a gain constraint to:

• Enforce a design requirement of disturbance rejection across a
particular input/output pair, by constraining the gain to be less than
1

• Enforce a custom roll-off rate in a particular frequency band, by
specifying a gain profile in that band

Construction Req = TuningGoal.Gain(inputname,outputname,gainvalue) creates
a tuning requirement Req. This requirement constrains the gain from
inputname to outputname to remain below the value gainvalue.

You can specify the inputname or outputname as cell arrays
(vector-valued signals). If you do so, then the tuning requirement
constrains the largest singular value of the transfer matrix from
inputname to outputname. See sigma for more information about
singular values.

Req = TuningGoal.Gain(inputname,outputname,gainprofile)
specifies the maximum gain as a function of frequency. You can specify
the target gain profile (maximum gain across the I/O pair) as a smooth
transfer function. Alternatively, you can sketch a piecewise error profile
using an frd model.
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Input Arguments

inputname

Input signal for requirement, specified as a string or a cell array
of strings for vector-valued signals. The signals available to
designate as input signals for the tuning requirement are as
follows.

• If you are using the requirement to tune a Simulink model of a
control system, then inputname can include:

- Any model input

- Any linearization input point in the model

- Any signal identified as a Controls, Measurements, or
Switches signal in an slTunable interface associated with
the Simulink model

• If you are using the requirement to tune a generalized
state-space model (genss) of a control system using systune,
then inputname can include:

- Any input of the control system model

- Any loopswitch channel in the control system model

For example, if you are tuning a control system model T, then
inputname can be a string contained in T.InputName. Also, if
T contains a loopswitch block with a switch channel X, then
inputname can include X.

• If you are using the requirement to tune a controller model C0
for a plant G0 using looptune, then inputname can include:

- Any input of the controller C0 or the plant G0

- Any loopswitch channel in C0 or G0
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If you use a loopswitch channel of a generalized model for
inputname, the input signal for the requirement is the implied
input associated with the switch:

����������
�

�
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outputname

Output signal for requirement, specified as a string or a cell
array of strings for vector-valued signals. The signals available
to designate as output signals for the tuning requirement are
as follows.

• If you are using the requirement to tune a Simulink model of a
control system, then outputname can include:

- Any model output

- Any linearization output point in the model

- Any signal identified as a Controls, Measurements, or
Switches signal in an slTunable interface associated with
the Simulink model

• If you are using the requirement to tune a generalized
state-space model (genss) of a control system using systune,
then outputname can include:

- Any output of the control system model

- Any loopswitch channel in the control system model

For example, if you are tuning a control system model T, then
outputname can be a string contained in T.OutputName. Also,
if T contains a loopswitch block with a switch channel X, then
outputname can include X.
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• If you are using the requirement to tune a controller model C0
for a plant G0 using looptune, then outputname can include:

- Any output of the controller C0 or the plant G0

- Any loopswitch channel in C0 or G0

If you use a loopswitch channel of a generalized model for
outputname, the output signal for the requirement is the implied
output associated with the switch:

����������
�

�
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gainvalue

Maximum gain (linear). The gain constraint Req specifies that the
gain from inputname to outputname is less than gainvalue.

gainvalue is a scalar value. If the signals inputname or
outputname are vector-valued signals, then gainvalue
constrains the largest singular value of the transfer matrix from
inputname to outputname. See sigma for more information
about singular values.

gainprofile

Gain profile as a function of frequency. The gain constraint Req
specifies that the gain from inputname to outputname at a
particular frequency is less than gainprofile. You can specify
gainprofile as a smooth transfer function (tf , zpk, or ss
model). Alternatively, you can sketch a piecewise gain profile
using a frd model. When you do so, the software automatically
maps the gain profile onto a zpkmodel. The magnitude of this zpk
model approximates the desired gain profile. Use viewSpec(Req)
to plot the magnitude of the zpk model.
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gainprofile is a SISO transfer function. If inputname or
outputname are cell arrays, gainprofile applies to all I/O pairs
from inputname to outputname

Properties Input

Input signal names, specified as a cell array of strings. These
strings specify the names of the inputs of the transfer function
that the tuning requirement constrains. The initial value of the
Input property is set by the inputname input argument when
you construct the requirement object.

Output

Output signal names, specified as a cell array of strings. These
strings specify the names of the outputs of the transfer function
that the tuning requirement constrains. The initial value of the
Output property is set by the outputname input argument when
you construct the requirement object.

MaxGain

Maximum gain as a function of frequency, expressed as a SISO
zpk model.

The software automatically maps the gainvalue or
gainprofile input arguments to a zpk model. The magnitude
of this zpk model approximates the desired gain profile, and is
stored in the MaxGain property. Use viewSpec(Req) to plot the
magnitude of MaxGain.

Focus

Frequency band in which tuning requirement is enforced,
specified as a row vector of the form [min,max].

Set the Focus property to limit enforcement of the requirement
to a particular frequency band. For example, suppose Req is a
requirement that you want to apply only between 1 and 100
rad/s. To restrict the requirement to this band, use the following
command:
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Req.Focus = [1,100];

Default: [0,Inf] for continuous time; [0,pi/Ts] for discrete
time, where Ts is the model sampling time.

Models

Models to which the tuning requirement applies, specified as
a vector of indices.

Use the Models property when you are tuning an array of control
system models with systune and you want to enforce the tuning
requirement only for a subset of the models in the array. For
example, suppose Req is a tuning requirement that you want to
apply only to the second, third, and fourth models in a model
array that you pass to systune. To restrict enforcement of the
requirement, use the following command:

Req.Models = 2:4;

When Models = NaN, the tuning requirement applies to all
models.

Default: NaN

Openings

Feedback loops to open when evaluating the requirement,
specified as a cell array of strings that identify loop-opening sites.
A loop-opening site can be:

• If you are tuning a control system specified as a genss model
in MATLAB, any feedback channel in a loopswitch block in
the model. In this case, set Openings to a cell array containing
the names of one or more loop-opening sites, as specified in the
loopID property of a loopswitch block in the control system
model.
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• If you are using looptune to tune a system that includes a plant
model and controller model, any control or measurement signal.
A control signal is a signal that is an output of the controller
model and an input of the plant model. A measurement signal
is a signal that is an output of the plant model and an input of
the controller model. In this case, set Openings to a cell array
containing the names of one or more measurement or control
signals.

• If you are tuning a Simulink model of a control system using
the slTunable interface, anyControls, Measurements, or
Switches signal in the slTunable interface. In this case,
set Openings to a cell array containing the names of one or
more signals that you added to the slTunable interface using
slTunable.addControl, slTunable.addMeasurement, or
slTunable.addSwitch.

If you do not specify any loop openings, the requirement is
evaluated with all loops closed.

Default: {}

Name

Name of the requirement object, specified as a string.

For example, if Req is a requirement,

Req.Name = 'TrackingReq';

Default: []

Algorithms When you tune a control system using a TuningGoal object to specify
a tuning requirement, the software converts the requirement into a
normalized scalar value f(x), where x is the vector of free (tunable)
parameters in the control system. The software then adjusts the
parameter values to minimize f(x), or to drive f(x) below 1 is the tuning
requirement is a hard constraint.
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For the TuningGoal.Gain requirement, f(x) is given by:

f x T s x    


1
MaxGain

, .

T(s,x) is the closed-loop transfer function from Input to Output.  
denotes the H∞ norm (see norm).

Examples Disturbance rejection

Create a gain constraint that enforces a disturbance rejection
requirement from a signal 'du' to a signal 'u'.

Req = TuningGoal.Gain('du','u',1);

This requirement specifies that the maximum gain of the response from
'du' to 'u' not exceed 1 (0 dB).

Custom roll-off specification

Create a gain constraint that constrains the response from a signal 'du'
to a signal 'u' to roll off at 20 dB/decade at frequencies greater than 1.
The gain constraint also specifies disturbance rejection (maximum gain
of 1) in the frequency range [0,1].

gmax = frd([1 1 0.01],[0 1 100]);
Req = TuningGoal.Gain('du','u',gmax);

These commands use a frd model to specify the gain profile as a
function of frequency. The maximum gain of 1 dB at the frequency 1
rad/s, together with the maximum gain of 0.01 dB at the frequency 100
rad/s, specifies the desired rolloff of 20 dB/decade.

The software converts gmax into a smooth function of frequency that
approximates the piecewise specified requirement. Display the error
requirement using viewSpec.

viewSpec(Req)
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The yellow region indicates where the requirement is violated.

Constrain Open-Loop Gain

Create a gain constraint that limits to 100 the open-loop gain from a
signal 'u' to a signal 'y'. Set the Openings property to the name of
signal at which you want to open the loop.

Req = TuningGoal.Gain('u','y',100);
Req.Openings = 'u';

See Also slTunable.looptune | looptune | slTunable.systune | viewSpec
| systune | TuningGoal.Tracking | TuningGoal.LoopShape |
slTunable

How To • “Specifying Design Requirements for systune”
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• “Performance and Robustness Specifications for looptune”

• “Using Design Requirement Objects”
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Purpose Constraint on closed-loop dynamics

Description Use the TuningGoal.Poles object to specify a tuning requirement for
constraining the closed-loop dynamics of a control system. You can use
this requirement for control system tuning with tuning commands such
as systune or looptune. A TuningGoal.Poles requirement can ensure
a minimum decay rate or eliminate fast dynamics in the tuned system.

After you create a requirement object, you can further configure the
tuning requirement by setting “Properties” on page 2-31 of the object.

Construction Req = TuningGoal.Poles() creates a tuning requirement Req that
imposes a minimum decay rate of 10–6 rad/s for the closed-loop
poles of the tuned control system. The requirement also limits the
maximum magnitude of the poles to 106 rad/s. This tuning requirement
affects only poles that depend on the free parameters in the tunable
components of the control system.

By default, the TuningGoal.Poles requirement To change these default
values, set the MinDecay and MaxDecay properties, respectively. (See
“Properties” on page 2-31.)

If you want to constrain the poles of the system with one or more loops
opened, set the Openings property.

Properties MinDecay

Minimum decay rate of closed-loop poles of tuned system, specified
as a positive scalar value in radians per second. When you tune
the control system using this requirement, closed-loop system
poles that depend on the tunable parameters are constrained to
satisfy Re(s) < -MinDecay. This constraint helps ensure stable
dynamics in the tuned system.

Change the value of this property to set a minimum decay rate
other than the default 10–6. For example, suppose Req is a
TuningGoal.Poles requirement. Change the minimum decay
rate to 0.001:

2-31



TuningGoal.Poles

Req.MinDecay = 0.001;

Default: 1e-6

MaxFrequency

Maximum natural frequency of poles of tuned system, specified as
a positive scalar value in radians per second. When you tune the
control system using this requirement, closed-loop system poles
that depend on the tunable parameters are constrained to satisfy
|s| < MaxFrequency. This constraint prevents fast dynamics in
the tunable component.

Change the value of this property to set maximum frequency
other than the default 106. For example, suppose Req is a
TuningGoal.Poles requirement. Change the maximum frequency
to 1000:

Req.MaxFrequency = 1000;

Default: 1e6

Models

Models to which the tuning requirement applies, specified as
a vector of indices.

Use the Models property when you are tuning an array of control
system models with systune and you want to enforce the tuning
requirement only for a subset of the models in the array. For
example, suppose Req is a tuning requirement that you want to
apply only to the second, third, and fourth models in a model
array that you pass to systune. To restrict enforcement of the
requirement, use the following command:

Req.Models = 2:4;

When Models = NaN, the tuning requirement applies to all
models.
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Default: NaN

Openings

Feedback loops to open when evaluating the requirement,
specified as a cell array of strings that identify loop-opening sites.
A loop-opening site can be:

• If you are tuning a control system specified as a genss model
in MATLAB, any feedback channel in a loopswitch block in
the model. In this case, set Openings to a cell array containing
the names of one or more loop-opening sites, as specified in the
loopID property of a loopswitch block in the control system
model.

• If you are using looptune to tune a system that includes a plant
model and controller model, any control or measurement signal.
A control signal is a signal that is an output of the controller
model and an input of the plant model. A measurement signal
is a signal that is an output of the plant model and an input of
the controller model. In this case, set Openings to a cell array
containing the names of one or more measurement or control
signals.

• If you are tuning a Simulink model of a control system using
the slTunable interface, anyControls, Measurements, or
Switches signal in the slTunable interface. In this case,
set Openings to a cell array containing the names of one or
more signals that you added to the slTunable interface using
slTunable.addControl, slTunable.addMeasurement, or
slTunable.addSwitch.

If you do not specify any loop openings, the requirement is
evaluated with all loops closed.

Default: {}

Name
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Name of the requirement object, specified as a string.

For example, if Req is a requirement,

Req.Name = 'TrackingReq';

Default: []

Examples Create a requirement that constrains the inner loop of the following
control system, evaluated with the outer loop open, to be stable and
free of fast dynamics.
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Create a model of the system by specifying and connecting the numeric
plant models G1 and G2, the tunable controllers C1, and the loopswitch
blocks X1 and X2 that mark potential loop-opening sites.

G1 = tf(10,[1 10]);
G2 = tf([1 2],[1 0.2 10]);
C1 = ltiblock.pid('C','pi');
C2 = ltiblock.gain('G',1);
X1 = loopswitch('X1');
X2 = loopswitch('X2');
T = feedback(G1*feedback(G2*C2,X2)*C1,X1);

Create a tuning requirement that constrains the dynamics of the
closed-loop poles.

Req = TuningGoal.Poles();
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If you tune T using systune and the tuning requirement Req, the
poles of the closed-loop system are constrained to the default region
Re(s) < –10–6, |s| < 106. However, both loopswitch blocks X1 and X2
are closed in their default state.

Specify that the constraint on the tuned system poles is applied with
the outer loop open. Additionally, further restrict the poles of the inner
loop to the region Re(s) < –0.1, |s| < 30.

Req.Openings = 'X1';
Req.MinDecay = 0.1;
Req.MaxFrequency = 30;

Now if you tune T using this requirement, the constraint applies only to
the poles of the inner loop, evaluated with the outer loop open.

After you tune T, you can use viewSpec to validate the tuned control
system against the requirement.

Algorithms When you tune a control system using a TuningGoal object to specify
a tuning requirement, the software converts the requirement into a
normalized scalar value f(x), where x is the vector of free (tunable)
parameters in the control system. The software then adjusts the
parameter values to minimize f(x), or to drive f(x) below 1 is the tuning
requirement is a hard constraint.

For the TuningGoal.Poles requirement, f(x) is given by:

f x E
E

       
 






max max Re ,

max
1  MinDecay

MaxFrequency 


.

E are the locations of closed-loop poles that depend on the tunable
parameters x (with any specified loop openings taken into account).

β is a parameter that depends on MinDecay.
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Tips • TuningGoal.Poles restricts the closed-loop dynamics of the tuned
control system. To constrain the dynamics or ensure the stability of a
single tunable component, use TuningGoal.StableController.

• The requirement only constrains dynamics that are in a feedback
loop with the tuned elements of the control system. Dynamics that
are independent of the tuned elements (such as weighting functions
or open-loop dynamics) are not constrained by TuningGoal.Poles.
For example, consider the following control system, in which C is a
tunable component.

�
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Tuning this control system with a TuningGoal.Poles requirement
constrains the dynamics of the feedback loop containing G and C.
However, the requirement does not constrain the dynamics of F or
the weighting function W.

See Also slTunable.looptune | looptune | systune | slTunable.systune
| viewSpec | evalSpec | ltiblock.tf | ltiblock.ss |
TuningGoal.StableController

How To • “Using Design Requirement Objects”

• “Performance and Robustness Specifications for looptune”

• “Specifying Design Requirements for systune”
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Purpose Constraint on the controller dynamics for control system tuning

Description Use the TuningGoal.StableController requirement object to specify
a tuning requirement that constrains the dynamics of a tunable
component (a Control Design Block) in a control system model. Use
this requirement for constraining ltiblock.tf or ltiblock.ss blocks
for control system tuning with tuning commands such as systune or
looptune. The TuningGoal.StableController requirement ensures
that the tuned value of the tunable component is stable and free of
fast dynamics.

After you create a requirement object, you can further configure the
tuning requirement by setting “Properties” on page 2-37 of the object.

Construction Req = TuningGoal.StableController(blockID) creates a tuning
requirement Req. This tuning requirement specifies that the tunable
component identified by blockID is stable and free of fast dynamics.

By default, the TuningGoal.StableController requirement imposes
a minimum decay rate of 10–6 rad/s for poles of the specified tunable
component. The requirement also limits the maximum magnitude of
such poles to 106 rad/s. To change these default values, set the MinDecay
and MaxDecay properties, respectively. (See “Properties” on page 2-37.)

Input Arguments

blockID

Tunable component to constrain, specified as a string.

The string blockID must correspond to the Name property of a
Control Design Block in the control system you are tuning.

Properties Block

Name of tunable component to constrain, specified as a string.
The value of Block is set by the blockID input argument.

MinDecay
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Minimum decay rate of poles of tunable component, specified as a
positive scalar value in radians per second. When you tune the
control system using this requirement, all poles of the tunable
component are constrained to satisfy Re(s) < -MinDecay.
This constraint helps ensure stable dynamics in the tunable
component.

Change the value of this property to set a minimum decay
rate other than the default 10–6. For example, suppose Req
is a TuningGoal.StableContoller requirement. Change the
minimum decay rate to 0.001:

Req.MinDecay = 0.001;

Default: 1e-6

MaxFrequency

Maximum natural frequency of poles of tunable component,
specified as a positive scalar value in radians per second.
When you tune the control system using this requirement,
all poles of the tunable component are constrained to satisfy
|s| < MaxFrequency. This constraint prevents fast dynamics in
the tunable component.

Change the value of this property to set maximum frequency
other than the default 106. For example, suppose Req is a
TuningGoal.StableContoller requirement. Change the
maximum frequency to 1000:

Req.MaxFrequency = 1000;

Default: 1e6

Name

Name of the requirement object, specified as a string.

For example, if Req is a requirement,
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Req.Name = 'TrackingReq';

Default: []

Examples Constrain Dynamics of Tunable Transfer Function

Create a tuning requirement that constrains the dynamics of a tunable
transfer function block in a tuned control system.

For this example, suppose that you are tuning a control system that
includes a compensator block parametrized as a second-order transfer
function. Create a tuning requirement that restricts the poles of that
transfer function to the region Re(s) < –0.1, |s| < 30.

Create a tunable component that represents the compensator.

C = ltiblock.tf('Compensator',2,2);

This command creates a Control Design Block named 'Compensator'
with two poles and two zeroes. You can construct a tunable control
system model, T, by interconnecting this Control Design Block with
other tunable and numeric LTI models. If you tune T using systune,
the values of these poles and zeroes are unconstrained by default.

Create a tuning requirement to constrain the dynamics of the
compensator block.

Req = TuningGoal.StableController('Compensator');

Set the minimum decay rate to 0.1 rad/s and set the maximum
frequency to 30 rad/s.

Req.MinDecay = 0.1;
Req.MaxFrequency = 30;

If you tune T using systune and the tuning requirement Req, the poles
of the compensator block are constrained satisfy these values.

After you tune T, you can use viewSpec to validate the tuned control
system against the requirement.
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Algorithms When you tune a control system using a TuningGoal object to specify
a tuning requirement, the software converts the requirement into a
normalized scalar value f(x), where x is the vector of free (tunable)
parameters in the control system. The software then adjusts the
parameter values to minimize f(x), or to drive f(x) below 1 is the tuning
requirement is a hard constraint.

For the TuningGoal.StableController requirement, f(x) is given by:

f x E
E

       
 






max max Re ,

max
1  MinDecay

MaxFrequency 


.

E are the locations of the poles of the specified tunable element.

β is a parameter that depends on MinDecay.

Tips • TuningGoal.StableController restricts the dynamics of a single
tunable component of the control system. To ensure the stability
or restrict the overall dynamics of the tuned control system, use
TuningGoal.Poles.

See Also slTunable.looptune | looptune | systune | slTunable.systune
| viewSpec | evalSpec | ltiblock.tf | ltiblock.ss |
TuningGoal.Poles

How To • “Using Design Requirement Objects”

• “Performance and Robustness Specifications for looptune”

• “Specifying Design Requirements for systune”

• “Models with Tunable Coefficients”
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Purpose Tracking requirement for control system tuning

Description Use the TuningGoal.Tracking object to specify a tracking requirement
that constrains a specified output to track a specified input. Use this
requirement for control system tuning with tuning commands such
as systune or looptune.

Construction Req =
TuningGoal.Tracking(inputname,outputname,responsetime,dcerror)
creates a tuning requirement Req. This tuning requirement specifies
that the output signal outputname tracks a step change in the
reference signal inputname. Req also specifies a target responsetime
and maximum steady-state error dcerror.

Req = TuningGoal.Tracking(inputname,outputname,maxerror)
specifies the maximum relative error as a function of frequency. You
can specify the target error profile (maximum gain from reference signal
to tracking error signal) as a smooth transfer function. Alternatively,
you can sketch a piecewise error profile using an frd model.

Input Arguments

inputname

Input signal for requirement, specified as a string or a cell array
of strings for vector-valued signals. The signals available to
designate as input signals for the tuning requirement are as
follows.

• If you are using the requirement to tune a Simulink model of a
control system, then inputname can include:

- Any model input

- Any linearization input point in the model

- Any signal identified as a Controls, Measurements, or
Switches signal in an slTunable interface associated with
the Simulink model
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• If you are using the requirement to tune a generalized
state-space model (genss) of a control system using systune,
then inputname can include:

- Any input of the control system model

- Any loopswitch channel in the control system model

For example, if you are tuning a control system model T, then
inputname can be a string contained in T.InputName. Also, if
T contains a loopswitch block with a switch channel X, then
inputname can include X.

• If you are using the requirement to tune a controller model C0
for a plant G0 using looptune, then inputname can include:

- Any input of the controller C0 or the plant G0

- Any loopswitch channel in C0 or G0

If you use a loopswitch channel of a generalized model for
inputname, the input signal for the requirement is the implied
input associated with the switch:

����������
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outputname

Output signal for requirement, specified as a string or a cell
array of strings for vector-valued signals. The signals available
to designate as output signals for the tuning requirement are
as follows.

• If you are using the requirement to tune a Simulink model of a
control system, then outputname can include:

- Any model output
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- Any linearization output point in the model

- Any signal identified as a Controls, Measurements, or
Switches signal in an slTunable interface associated with
the Simulink model

• If you are using the requirement to tune a generalized
state-space model (genss) of a control system using systune,
then outputname can include:

- Any output of the control system model

- Any loopswitch channel in the control system model

For example, if you are tuning a control system model T, then
outputname can be a string contained in T.OutputName. Also,
if T contains a loopswitch block with a switch channel X, then
outputname can include X.

• If you are using the requirement to tune a controller model C0
for a plant G0 using looptune, then outputname can include:

- Any output of the controller C0 or the plant G0

- Any loopswitch channel in C0 or G0

If you use a loopswitch channel of a generalized model for
outputname, the output signal for the requirement is the implied
output associated with the switch:

����������
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responsetime

Target response time.

Express the target response time in the time units of the models
to be tuned with looptune. For example, when tuning a plant
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G0 and controller C0, if C0.TimeUnit and G0.TimeUnit are
'minutes', then express the target response time in minutes.

dcerror

Maximum steady-state fractional tracking error.

dcerror is a scalar value. If inputname or outputname are
vector-valued, dcerror applies to all I/O pairs from inputname
to outputname.

maxerror

Target tracking error profile as a function of frequency.

maxerror is the maximum gain from reference signal to tracking
error signal. You can specify maxerror as a smooth transfer
function (tf, zpk, or ss model). Alternatively, you can sketch a
piecewise error profile using a frd model. When you do so, the
software automatically maps the error profile to a zpk model.
The magnitude of the zpk model. approximates the desired error
profile. Use show(Req) to plot the magnitude of the zpk model.

maxerror is a SISO transfer function. If inputname or
outputname are cell arrays, maxerror applies to all I/O pairs
from inputname to outputname.

Properties ReferenceInput

Reference signal names. String or cell array of strings specifying
the names of the signals to be tracked, populated by the
inputname argument.

TrackingOutput

Output signal names. String or cell array of strings specifying
the names of the signals that must track the reference signals,
populated by the outputname argument.

MaxError

Maximum error as a function of frequency, expressed as a SISO
zpk model. This property stores the maximum tracking error as
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a function of frequency (maximum gain from reference signal to
tracking error signal).

The software automatically maps the dcerror or maxerror
input arguments onto a zpk model. The magnitude of this zpk
model approximates the desired error profile. The zpk model
is stored in the MaxError property. Use show(Req) to plot the
magnitude of MaxError.

Focus

Frequency band in which tuning requirement is enforced,
specified as a row vector of the form [min,max].

Set the Focus property to limit enforcement of the requirement
to a particular frequency band. For example, suppose Req is a
requirement that you want to apply only between 1 and 100
rad/s. To restrict the requirement to this band, use the following
command:

Req.Focus = [1,100];

Default: [0,Inf] for continuous time; [0,pi/Ts] for discrete
time, where Ts is the model sampling time.

Models

Models to which the tuning requirement applies, specified as
a vector of indices.

Use the Models property when you are tuning an array of control
system models with systune and you want to enforce the tuning
requirement only for a subset of the models in the array. For
example, suppose Req is a tuning requirement that you want to
apply only to the second, third, and fourth models in a model
array that you pass to systune. To restrict enforcement of the
requirement, use the following command:

Req.Models = 2:4;
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When Models = NaN, the tuning requirement applies to all
models.

Default: NaN

Openings

Feedback loops to open when evaluating the requirement,
specified as a cell array of strings that identify loop-opening sites.
A loop-opening site can be:

• If you are tuning a control system specified as a genss model
in MATLAB, any feedback channel in a loopswitch block in
the model. In this case, set Openings to a cell array containing
the names of one or more loop-opening sites, as specified in the
loopID property of a loopswitch block in the control system
model.

• If you are using looptune to tune a system that includes a plant
model and controller model, any control or measurement signal.
A control signal is a signal that is an output of the controller
model and an input of the plant model. A measurement signal
is a signal that is an output of the plant model and an input of
the controller model. In this case, set Openings to a cell array
containing the names of one or more measurement or control
signals.

• If you are tuning a Simulink model of a control system using
the slTunable interface, anyControls, Measurements, or
Switches signal in the slTunable interface. In this case,
set Openings to a cell array containing the names of one or
more signals that you added to the slTunable interface using
slTunable.addControl, slTunable.addMeasurement, or
slTunable.addSwitch.

If you do not specify any loop openings, the requirement is
evaluated with all loops closed.
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Default: {}

Name

Name of the requirement object, specified as a string.

For example, if Req is a requirement,

Req.Name = 'TrackingReq';

Default: []

Algorithms When you tune a control system using a TuningGoal object to specify
a tuning requirement, the software converts the requirement into a
normalized scalar value f(x), where x is the vector of free (tunable)
parameters in the control system. The software then adjusts the
parameter values to minimize f(x), or to drive f(x) below 1 is the tuning
requirement is a hard constraint.

For the TuningGoal.Tracking requirement, f(x) is given by:

f x T s x I      


1
MaxError

, .

T(s,x) is the closed-loop transfer function from ReferenceInput to

TrackingOutput.   denotes the H∞ norm (see norm).

Examples Tracking requirement with response time and maximum
steady-state tracking error

Create a tracking requirement specifying that a signal 'theta' track
a signal 'theta_ref'. The required response time is 2, in the time
units of the control system you are tuning. The maximum steady-state
error is 0.01%.

Req = TuningGoal.Tracking('theta_ref','theta',2,0.001);
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Tracking requirement with maximum tracking error as a
function of frequency

Create a tracking requirement specifying that a signal 'theta' track a
signal 'theta_ref'. The maximum relative error is 0.01 (1%) in the
frequency range [0,1]. The relative error increases to 1 (100%) at the
frequency 100.

Use a frd model to specify the error profile as a function of frequency.

err = frd([0.01 0.01 1],[0 1 100]);
Req = TuningGoal.Tracking('theta_ref','theta',err);

The software converts err into a smooth function of frequency that
approximates the piecewise specified requirement. Display the error
requirement using viewSpec.

viewSpec(Req)
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The yellow region indicates where the requirement is violated.

See Also slTunable.looptune | looptune | slTunable.systune | systune |
viewSpec | evalSpec | TuningGoal.Gain | TuningGoal.LoopShape |
slTunable

How To • “Using Design Requirement Objects”

• “Performance and Robustness Specifications for looptune”

• “Specifying Design Requirements for systune”
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Purpose Noise amplification constraint for control system tuning

Description Use the TuningGoal.Variance object to specify a tuning requirement
that limits the noise amplification from specified inputs to outputs. The
noise amplification is defined as either:

• The square root of the output variance, for a unit-variance
white-noise input

• The root-mean-square of the output, for a unit-variance white-noise
input

• The H2 norm of the transfer function from the specified inputs to
outputs, which is equal to the total energy of the impulse response

These definitions are different interpretations of the same quantity.
TuningGoal.Variance imposes the same limit on these quantities.

You can use the TuningGoal.Variance requirement for control system
tuning with tuning commands such as systune or looptune. This
requirement is useful for tuning the system response for white-noise
inputs. For stochastic inputs with a nonuniform spectrum (colored
noise), use TuningGoal.WeightedVariance instead.

After you create a requirement object, you can further configure the
tuning requirement by setting “Properties” on page 2-53 of the object.

Construction Req = TuningGoal.Variance(inputname,outputname,maxamp)
creates a tuning requirement Req. This tuning requirement limits
the noise amplification of the transfer function from inputname to
outputname to the scalar value maxamp.

Input Arguments

inputname

Input signal for requirement, specified as a string or a cell array
of strings for vector-valued signals. The signals available to
designate as input signals for the tuning requirement are as
follows.
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• If you are using the requirement to tune a Simulink model of a
control system, then inputname can include:

- Any model input

- Any linearization input point in the model

- Any signal identified as a Controls, Measurements, or
Switches signal in an slTunable interface associated with
the Simulink model

• If you are using the requirement to tune a generalized
state-space model (genss) of a control system using systune,
then inputname can include:

- Any input of the control system model

- Any loopswitch channel in the control system model

For example, if you are tuning a control system model T, then
inputname can be a string contained in T.InputName. Also, if
T contains a loopswitch block with a switch channel X, then
inputname can include X.

• If you are using the requirement to tune a controller model C0
for a plant G0 using looptune, then inputname can include:

- Any input of the controller C0 or the plant G0

- Any loopswitch channel in C0 or G0

If you use a loopswitch channel of a generalized model for
inputname, the input signal for the requirement is the implied
input associated with the switch:
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outputname
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Output signal for requirement, specified as a string or a cell
array of strings for vector-valued signals. The signals available
to designate as output signals for the tuning requirement are
as follows.

• If you are using the requirement to tune a Simulink model of a
control system, then outputname can include:

- Any model output

- Any linearization output point in the model

- Any signal identified as a Controls, Measurements, or
Switches signal in an slTunable interface associated with
the Simulink model

• If you are using the requirement to tune a generalized
state-space model (genss) of a control system using systune,
then outputname can include:

- Any output of the control system model

- Any loopswitch channel in the control system model

For example, if you are tuning a control system model T, then
outputname can be a string contained in T.OutputName. Also,
if T contains a loopswitch block with a switch channel X, then
outputname can include X.

• If you are using the requirement to tune a controller model C0
for a plant G0 using looptune, then outputname can include:

- Any output of the controller C0 or the plant G0

- Any loopswitch channel in C0 or G0

If you use a loopswitch channel of a generalized model for
outputname, the output signal for the requirement is the implied
output associated with the switch:
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maxamp

Maximum noise amplification from inputname to outputname,
specified as a positive scalar value. This value specifies the
maximum value of the output variance at the signals specified in
outputname, for unit-variance white noise signal at inputname.
This value corresponds to the maximumH2 norm from inputname
to outputname.

Properties Input

Input signal names, specified as a cell array of strings. These
strings specify the names of the inputs of the transfer function
that the tuning requirement constrains. The initial value of the
Input property is set by the inputname input argument when
you construct the requirement object.

Output

Output signal names, specified as a cell array of strings. These
strings specify the names of the outputs of the transfer function
that the tuning requirement constrains. The initial value of the
Output property is set by the outputname input argument when
you construct the requirement object.

MaxAmplification

Maximum noise amplification, specified as a positive scalar value.
This property specifies the maximum value of the output variance
at the signals specified in Output, for unit-variance white noise
signal at Input. This value corresponds to the maximum H2 norm
from Input to Output. The initial value of MaxAmplification
is set by the maxamp input argument when you construct the
requirement.
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Models

Models to which the tuning requirement applies, specified as
a vector of indices.

Use the Models property when you are tuning an array of control
system models with systune and you want to enforce the tuning
requirement only for a subset of the models in the array. For
example, suppose Req is a tuning requirement that you want to
apply only to the second, third, and fourth models in a model
array that you pass to systune. To restrict enforcement of the
requirement, use the following command:

Req.Models = 2:4;

When Models = NaN, the tuning requirement applies to all
models.

Default: NaN

Openings

Feedback loops to open when evaluating the requirement,
specified as a cell array of strings that identify loop-opening sites.
A loop-opening site can be:

• If you are tuning a control system specified as a genss model
in MATLAB, any feedback channel in a loopswitch block in
the model. In this case, set Openings to a cell array containing
the names of one or more loop-opening sites, as specified in the
loopID property of a loopswitch block in the control system
model.

• If you are using looptune to tune a system that includes a plant
model and controller model, any control or measurement signal.
A control signal is a signal that is an output of the controller
model and an input of the plant model. A measurement signal
is a signal that is an output of the plant model and an input of
the controller model. In this case, set Openings to a cell array
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containing the names of one or more measurement or control
signals.

• If you are tuning a Simulink model of a control system using
the slTunable interface, anyControls, Measurements, or
Switches signal in the slTunable interface. In this case,
set Openings to a cell array containing the names of one or
more signals that you added to the slTunable interface using
slTunable.addControl, slTunable.addMeasurement, or
slTunable.addSwitch.

If you do not specify any loop openings, the requirement is
evaluated with all loops closed.

Default: {}

Name

Name of the requirement object, specified as a string.

For example, if Req is a requirement,

Req.Name = 'TrackingReq';

Default: []

Algorithms When you tune a control system using a TuningGoal object to specify
a tuning requirement, the software converts the requirement into a
normalized scalar value f(x), where x is the vector of free (tunable)
parameters in the control system. The software then adjusts the
parameter values to minimize f(x), or to drive f(x) below 1 is the tuning
requirement is a hard constraint.

For the TuningGoal.Variance requirement, f(x) is given by:

f x T s x    1

2MaxAmplification
, .

2-55



TuningGoal.Variance

T(s,x) is the closed-loop transfer function from Input to Output.  2
denotes the H2 norm (see norm).

Examples Constrain Noise Amplification Evaluated with a Loop
Opening

Create a requirement that constrains the amplification of the variance
from the switch X2 to the output y of the following control system,
measured with the outer loop open.
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Create a model of the system by specifying and connecting the numeric
plant models G1 and G2, the tunable controllers C1, and the loopswitch
blocks X1 and X2 that mark potential loop-opening sites.

G1 = tf(10,[1 10]);
G2 = tf([1 2],[1 0.2 10]);
C1 = ltiblock.pid('C','pi');
C2 = ltiblock.gain('G',1);
X1 = loopswitch('X1');
X2 = loopswitch('X2');
T = feedback(G1*feedback(G2*C2,X2)*C1,X1);

Create a tuning requirement that constrains the noise amplification
from the implicit input associated with the switch X2 to the output y to
a factor of 0.1.

Req = TuningGoal.Variance('X2','y',0.1);
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Specify that the transfer function from X2 to y is evaluated with the
outer loop open for the purpose of tuning to this constraint.

Req.Openings = {'X1'};

Use systune to tune the free parameters of T to meet the tuning
requirement specified by Req. You can then validate the tuned
control system against the requirement using the command
viewSpec(Req,T,Info).

See Also slTunable.looptune | looptune | systune | slTunable
| slTunable.systune | viewSpec | evalSpec | norm |
TuningGoal.WeightedVariance

How To • “Using Design Requirement Objects”

• “Performance and Robustness Specifications for looptune”

• “Specifying Design Requirements for systune”
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Purpose Frequency-weighted gain constraint for control system tuning

Description Use the TuningGoal.WeightedGain object to specify a tuning
requirement that limits the weighted gain from specified inputs to
outputs. The weighted gain is the maximum across frequency of the
gain from input to output, multiplied by weighting functions that you
specify. You can use the TuningGoal.WeightedGain requirement for
control system tuning with tuning commands such as systune or
looptune.

After you create a requirement object, you can further configure the
tuning requirement by setting “Properties” on page 2-61 of the object.

Construction Req = TuningGoal.WeightedGain(inputname,outputname,WL,WR)
creates a tuning requirement Req. This tuning requirement specifies
that the closed-loop transfer function H(s) from the specified input to
output meets the requirement:

||WL(s)H(s)WR(s)||∞ < 1.

The notation ||•||∞ denotes the maximum gain across frequency
(the H∞ norm).

Input Arguments

inputname

Input signal for requirement, specified as a string or a cell array
of strings for vector-valued signals. The signals available to
designate as input signals for the tuning requirement are as
follows.

• If you are using the requirement to tune a Simulink model of a
control system, then inputname can include:

- Any model input

- Any linearization input point in the model
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- Any signal identified as a Controls, Measurements, or
Switches signal in an slTunable interface associated with
the Simulink model

• If you are using the requirement to tune a generalized
state-space model (genss) of a control system using systune,
then inputname can include:

- Any input of the control system model

- Any loopswitch channel in the control system model

For example, if you are tuning a control system model T, then
inputname can be a string contained in T.InputName. Also, if
T contains a loopswitch block with a switch channel X, then
inputname can include X.

• If you are using the requirement to tune a controller model C0
for a plant G0 using looptune, then inputname can include:

- Any input of the controller C0 or the plant G0

- Any loopswitch channel in C0 or G0

If you use a loopswitch channel of a generalized model for
inputname, the input signal for the requirement is the implied
input associated with the switch:
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outputname

Output signal for requirement, specified as a string or a cell
array of strings for vector-valued signals. The signals available
to designate as output signals for the tuning requirement are
as follows.
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• If you are using the requirement to tune a Simulink model of a
control system, then outputname can include:

- Any model output

- Any linearization output point in the model

- Any signal identified as a Controls, Measurements, or
Switches signal in an slTunable interface associated with
the Simulink model

• If you are using the requirement to tune a generalized
state-space model (genss) of a control system using systune,
then outputname can include:

- Any output of the control system model

- Any loopswitch channel in the control system model

For example, if you are tuning a control system model T, then
outputname can be a string contained in T.OutputName. Also,
if T contains a loopswitch block with a switch channel X, then
outputname can include X.

• If you are using the requirement to tune a controller model C0
for a plant G0 using looptune, then outputname can include:

- Any output of the controller C0 or the plant G0

- Any loopswitch channel in C0 or G0

If you use a loopswitch channel of a generalized model for
outputname, the output signal for the requirement is the implied
output associated with the switch:
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WL,WR
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Frequency-weighting functions, specified as scalars or as SISO
or MIMO numeric LTI models.

The functions WL and WR provide the weights for the tuning
requirement, which ensures that the gain H(s) from the specified
input to output satisfies the inequality:

||WL(s)H(s)WR(s)||∞ < 1.

WL provides the weighting for the output channels of H(s), and WR
provides the weighting for the input channels. You can specify
scalar weights, or specify frequency-dependent weighting using a
numeric LTI model. For example:

WL = tf(1,[1 0.01]);
WR = 10;

If you specify MIMO weighting functions, then inputname and
outputname must be vector signals such that the dimensions of
H(s) are commensurate with the dimensions of WL and WR. For
example, if you specify WR = diag([1 10]), then inputname
must include two signals. Scalar values, however, automatically
expand to any input or output dimension.

A value of WL = [] or WR = [] is interpreted as the identity.

Properties Input

Input signal names, specified as a cell array of strings. These
strings specify the names of the inputs of the transfer function
that the tuning requirement constrains. The initial value of the
Input property is set by the inputname input argument when
you construct the requirement object.

Output

Output signal names, specified as a cell array of strings. These
strings specify the names of the outputs of the transfer function
that the tuning requirement constrains. The initial value of the
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Output property is set by the outputname input argument when
you construct the requirement object.

WL

Frequency-weighting function for the output channels of the
transfer function H(s) to constrain, specified as a scalar, or as
a SISO or MIMO numeric LTI model. The initial value of the
WL property is set by the WL input argument when you construct
the requirement object.

WR

Frequency-weighting function for the input channels of the
transfer function to constrain, specified as a scalar or as a SISO or
MIMO numeric LTI model. The initial value of the WR property is
set by the WR input argument when you construct the requirement
object.

Focus

Frequency band in which tuning requirement is enforced,
specified as a row vector of the form [min,max].

Set the Focus property to limit enforcement of the requirement
to a particular frequency band. For example, suppose Req is a
requirement that you want to apply only between 1 and 100
rad/s. To restrict the requirement to this band, use the following
command:

Req.Focus = [1,100];

Default: [0,Inf] for continuous time; [0,pi/Ts] for discrete
time, where Ts is the model sampling time.

Models

Models to which the tuning requirement applies, specified as
a vector of indices.

Use the Models property when you are tuning an array of control
system models with systune and you want to enforce the tuning
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requirement only for a subset of the models in the array. For
example, suppose Req is a tuning requirement that you want to
apply only to the second, third, and fourth models in a model
array that you pass to systune. To restrict enforcement of the
requirement, use the following command:

Req.Models = 2:4;

When Models = NaN, the tuning requirement applies to all
models.

Default: NaN

Name

Name of the requirement object, specified as a string.

For example, if Req is a requirement,

Req.Name = 'TrackingReq';

Default: []

Openings

Feedback loops to open when evaluating the requirement,
specified as a cell array of strings that identify loop-opening sites.
A loop-opening site can be:

• If you are tuning a control system specified as a genss model
in MATLAB, any feedback channel in a loopswitch block in
the model. In this case, set Openings to a cell array containing
the names of one or more loop-opening sites, as specified in the
loopID property of a loopswitch block in the control system
model.

• If you are using looptune to tune a system that includes a plant
model and controller model, any control or measurement signal.
A control signal is a signal that is an output of the controller
model and an input of the plant model. A measurement signal
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is a signal that is an output of the plant model and an input of
the controller model. In this case, set Openings to a cell array
containing the names of one or more measurement or control
signals.

• If you are tuning a Simulink model of a control system using
the slTunable interface, anyControls, Measurements, or
Switches signal in the slTunable interface. In this case,
set Openings to a cell array containing the names of one or
more signals that you added to the slTunable interface using
slTunable.addControl, slTunable.addMeasurement, or
slTunable.addSwitch.

If you do not specify any loop openings, the requirement is
evaluated with all loops closed.

Default: {}

Algorithms When you tune a control system using a TuningGoal object to specify
a tuning requirement, the software converts the requirement into a
normalized scalar value f(x), where x is the vector of free (tunable)
parameters in the control system. The software then adjusts the
parameter values to minimize f(x), or to drive f(x) below 1 is the tuning
requirement is a hard constraint.

For the TuningGoal.WeightedGain requirement, f(x) is given by:

f x W T s x WL R     
, .

T(s,x) is the closed-loop transfer function from Input to Output.  
denotes the H2 norm (see norm).

Examples Constrain Weighted Gain of Closed-Loop System

Create a tuning goal requirement that constrains the gain of a
closed-loop SISO system from its input r to its output y. Weight
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the gain at its input by a factor of 10, and at its output by the
frequency-dependent weight 1/(s + 0.01).

WL = tf(1,[1 0.01]);
WR = 10;
Req = TuningGoal.WeightedGain('r','y',WL,WR);

You can use the requirement Req with systune to tune the free
parameters of a control system model that has an input signal 'r' and
an output signal 'y'.

You can then use viewSpec to validate the tuned control system against
the requirement.

Constrain Weighted Gain Evaluated with a Loop Opening

Create a requirement that constrains the gain of the outer loop of the
following control system, evaluated with the inner loop open.

�
�
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Create a model of the system by specifying and connecting the numeric
plant models G1 and G2, the tunable controllers C1, and the loopswitch
blocks X1 and X2 that mark potential loop-opening sites.

G1 = tf(10,[1 10]);
G2 = tf([1 2],[1 0.2 10]);
C1 = ltiblock.pid('C','pi');
C2 = ltiblock.gain('G',1);
X1 = loopswitch('X1');
X2 = loopswitch('X2');
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T = feedback(G1*feedback(G2*C2,X2)*C1,X1);

Create a tuning requirement that constrains the gain of this system
from its input r to its output y. Weight the gain at the output by s/(s +
0.5).

WL = tf([1 0],[1 0.5]);
Req = TuningGoal.WeightedGain('r','y',WL,[]);

This requirement is equivalent to Req =
TuningGoal.Gain('r','y',1/WL). However, for MIMO systems,
you can use TuningGoal.WeightedGain to create channel-specific
weightings that cannot be expressed as TuningGoal.Gain requirements.

Specify that the transfer function from r to its output y is evaluated
with the inner loop open for the purpose of tuning to this constraint.

Req.Openings = {'X2'};

Use systune to tune the free parameters of T to meet the tuning
requirement specified by Req. You can then validate the tuned
control system against the requirement using the command
viewSpec(Req,T,Info).

See Also slTunable.looptune | looptune | systune | slTunable.systune |
slTunable | viewSpec | evalSpec

How To • “Using Design Requirement Objects”

• “Performance and Robustness Specifications for looptune”

• “Specifying Design Requirements for systune”
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Purpose Frequency-weighted H2 norm constraint for control system tuning

Description Use the TuningGoal.WeightedVariance object to specify a tuning
requirement that limits the weighted H2 norm of the transfer function
from specified inputs to outputs. The H2 norm measures:

• For deterministic inputs to the transfer function, the total energy
of the impulse response.

• For stochastic inputs to the transfer function, the square root of the
output variance for a unit-variance white-noise input. Equivalently,
the H2 norm measures the root-mean-square of the output for such
input.

You can use the TuningGoal.WeightedVariance requirement for
control system tuning with tuning commands such as systune or
looptune. This requirement is useful for tuning the system response to
stochastic inputs with a nonuniform spectrum such as colored noise or
wind gusts. You can also use TuningGoal.WeightedVariance to specify
LQG-like performance objectives.

After you create a requirement object, you can further configure the
tuning requirement by setting “Properties” on page 2-71 of the object.

Construction Req = TuningGoal.Variance(inputname,outputname,WL,WR) creates
a tuning requirement Req. This tuning requirement This tuning
requirement specifies that the closed-loop transfer function H(s) from
the specified input to output meets the requirement:.

||WL(s)H(s)WR(s)||2 < 1.

The notation ||•||2 denotes the H2 norm.

Input Arguments

inputname

Input signal for requirement, specified as a string or a cell array
of strings for vector-valued signals. The signals available to
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designate as input signals for the tuning requirement are as
follows.

• If you are using the requirement to tune a Simulink model of a
control system, then inputname can include:

- Any model input

- Any linearization input point in the model

- Any signal identified as a Controls, Measurements, or
Switches signal in an slTunable interface associated with
the Simulink model

• If you are using the requirement to tune a generalized
state-space model (genss) of a control system using systune,
then inputname can include:

- Any input of the control system model

- Any loopswitch channel in the control system model

For example, if you are tuning a control system model T, then
inputname can be a string contained in T.InputName. Also, if
T contains a loopswitch block with a switch channel X, then
inputname can include X.

• If you are using the requirement to tune a controller model C0
for a plant G0 using looptune, then inputname can include:

- Any input of the controller C0 or the plant G0

- Any loopswitch channel in C0 or G0

If you use a loopswitch channel of a generalized model for
inputname, the input signal for the requirement is the implied
input associated with the switch:
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outputname

Output signal for requirement, specified as a string or a cell
array of strings for vector-valued signals. The signals available
to designate as output signals for the tuning requirement are
as follows.

• If you are using the requirement to tune a Simulink model of a
control system, then outputname can include:

- Any model output

- Any linearization output point in the model

- Any signal identified as a Controls, Measurements, or
Switches signal in an slTunable interface associated with
the Simulink model

• If you are using the requirement to tune a generalized
state-space model (genss) of a control system using systune,
then outputname can include:

- Any output of the control system model

- Any loopswitch channel in the control system model

For example, if you are tuning a control system model T, then
outputname can be a string contained in T.OutputName. Also,
if T contains a loopswitch block with a switch channel X, then
outputname can include X.

• If you are using the requirement to tune a controller model C0
for a plant G0 using looptune, then outputname can include:

- Any output of the controller C0 or the plant G0
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- Any loopswitch channel in C0 or G0

If you use a loopswitch channel of a generalized model for
outputname, the output signal for the requirement is the implied
output associated with the switch:

����������
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WL,WR

Frequency-weighting functions, specified as scalars or as SISO
or MIMO numeric LTI models.

The functions WL and WR provide the weights for the tuning
requirement, which ensures that the gain H(s) from the specified
input to output satisfies the inequality:

||WL(s)H(s)WR(s)||2 < 1.

WL provides the weighting for the output channels of H(s), and WR
provides the weighting for the input channels. You can specify
scalar weights, or specify frequency-dependent weighting using a
numeric LTI model. For example:

WL = tf(1,[1 0.01]);
WR = 10;

If you specify MIMO weighting functions, then inputname and
outputname must be vector signals such that the dimensions of
H(s) are commensurate with the dimensions of WL and WR. For
example, if you specify WR = diag([1 10]), then inputname
must include two signals. Scalar values, however, automatically
expand to any input or output dimension.

A value of WL = [] or WR = [] is interpreted as the identity.
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Properties Input

Input signal names, specified as a cell array of strings. These
strings specify the names of the inputs of the transfer function
that the tuning requirement constrains. The initial value of the
Input property is set by the inputname input argument when
you construct the requirement object.

Output

Output signal names, specified as a cell array of strings. These
strings specify the names of the outputs of the transfer function
that the tuning requirement constrains. The initial value of the
Output property is set by the outputname input argument when
you construct the requirement object.

WL

Frequency-weighting function for the output channels of the
transfer function H(s) to constrain, specified as a scalar, or as
a SISO or MIMO numeric LTI model. The initial value of the
WL property is set by the WL input argument when you construct
the requirement object.

WR

Frequency-weighting function for the input channels of the
transfer function to constrain, specified as a scalar or as a SISO or
MIMO numeric LTI model. The initial value of the WR property is
set by the WR input argument when you construct the requirement
object.

Models

Models to which the tuning requirement applies, specified as
a vector of indices.

Use the Models property when you are tuning an array of control
system models with systune and you want to enforce the tuning
requirement only for a subset of the models in the array. For
example, suppose Req is a tuning requirement that you want to
apply only to the second, third, and fourth models in a model
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array that you pass to systune. To restrict enforcement of the
requirement, use the following command:

Req.Models = 2:4;

When Models = NaN, the tuning requirement applies to all
models.

Default: NaN

Openings

Feedback loops to open when evaluating the requirement,
specified as a cell array of strings that identify loop-opening sites.
A loop-opening site can be:

• If you are tuning a control system specified as a genss model
in MATLAB, any feedback channel in a loopswitch block in
the model. In this case, set Openings to a cell array containing
the names of one or more loop-opening sites, as specified in the
loopID property of a loopswitch block in the control system
model.

• If you are using looptune to tune a system that includes a plant
model and controller model, any control or measurement signal.
A control signal is a signal that is an output of the controller
model and an input of the plant model. A measurement signal
is a signal that is an output of the plant model and an input of
the controller model. In this case, set Openings to a cell array
containing the names of one or more measurement or control
signals.

• If you are tuning a Simulink model of a control system using
the slTunable interface, anyControls, Measurements, or
Switches signal in the slTunable interface. In this case,
set Openings to a cell array containing the names of one or
more signals that you added to the slTunable interface using
slTunable.addControl, slTunable.addMeasurement, or
slTunable.addSwitch.
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If you do not specify any loop openings, the requirement is
evaluated with all loops closed.

Default: {}

Name

Name of the requirement object, specified as a string.

For example, if Req is a requirement,

Req.Name = 'TrackingReq';

Default: []

Algorithms When you tune a control system using a TuningGoal object to specify
a tuning requirement, the software converts the requirement into a
normalized scalar value f(x), where x is the vector of free (tunable)
parameters in the control system. The software then adjusts the
parameter values to minimize f(x), or to drive f(x) below 1 is the tuning
requirement is a hard constraint.

For the TuningGoal.WeightedVariance requirement, f(x) is given by:

f x W T s x WL R    , .
2

T(s,x) is the closed-loop transfer function from Input to Output.  2
denotes the H2 norm (see norm).

Examples Weighted Constraint on H2 Norm

Create a constraint for a transfer function with one input, r, and two
outputs, e and y, that limits the H2 norm as follows:
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Tre is the closed-loop transfer function from r to e, and Try is the
closed-loop transfer function from r to y.

s = tf('s');
WL = blkdiag(1/(s+0.001),s/(0.001*s+1));
Req = TuningGoal.WeightedVariance('r',{'e','y'},WL,[]);

See Also slTunable.looptune | looptune | TuningGoal.Gain |
TuningGoal.LoopShape | slTunable | slTunable.systune | norm
| TuningGoal.Variance

How To • “Specifying Design Requirements for systune”

• “Performance and Robustness Specifications for looptune”

• “Using Design Requirement Objects”
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actual2normalized

Purpose Transform actual values to normalized values

Syntax NDIST = actual2normalized(A,V)
NV = actual2normalized(uElement,AV)
NDIST = actual2normalized(A,V)
[NV,ndist] = actual2normalized(uElement,AV)

Description NV = actual2normalized(uElement,AV) transforms the values AV of
the uncertain element uElement into normalized values NV. If AV is
the nominal value of uElement, NV is 0. Otherwise, AV values inside
the uncertainty range of uElement map to the unit ball ||NV|| <=
1, and values outside the uncertainty range map to ||NV|| > 1. The
argument AV can contain a single value or an array of values. NV has
the same dimensions as AV.

[NV,ndist] = actual2normalized(uElement,AV) also returns the
normalized distance ndist between the values AV and the nominal
value of uElement. This distance is the norm of NV. Therefore, ndist
<= 1 for values inside the uncertainty range of uElement, and ndist >
1 for values outside the range. If AV is an array of values, then ndist is
an array of normalized distances.

The robustness margins computed in robuststab and robustperf
serve as bounds for the normalized distances in ndist. For example, if
an uncertain system has a stability margin of 1.4, this system is stable
for all uncertain element values whose normalized distance from the
nominal is less than 1.4.

Examples Uncertain Real Parameter with Symmetric Range

For uncertain real parameters whose range is symmetric about their
nominal value, the normalized distance is intuitive, scaling linearly
with the numerical difference from the uncertain real parameter’s
nominal value.

Create uncertain real parameters with a range that is symmetric about
the nominal value, where each end point is 1 unit from the nominal.
Points that lie inside the range are less than 1 unit from the nominal,
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while points that lie outside the range are greater than 1 unit from
the nominal.

a = ureal('a',3,'range',[1 5]);
NV = actual2normalized(a,[1 3 5])

NV =

-1.0000 0 1.0000

NV = actual2normalized(a,[2 4])

NV =

-0.5000 0.5000

NV = actual2normalized(a,[0 6])

NV =

-1.5000 1.5000

Plot the normalized values and normalized distance for several values.

values = linspace(-3,9,250);
[nv,ndist] = actual2normalized(a,values);
plot(values,nv,'r.',values,ndist,'b-')
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Uncertain Real Parameter with Nonsymmetric Range

Next, create a nonsymmetric parameter. It still is true that the end
points are 1 normalized unit from nominal, and the nominal is 0
normalized units from nominal, moreover points inside the range are
less than 1 unit from nominal, and points outside the range are greater
than 1 unit from nominal. However, the relationship between the
normalized distance and numerical difference is nonlinear.

au = ureal('ua',4,'range',[1 5]);
NV = actual2normalized(au,[1 4 5])

NV =

-1 0 1
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NV = actual2normalized(au,[2 4.5])

NV =

-0.8000 0.4000

NV = actual2normalized(a,[0 6])

NV =

-1.1429 4.0000

Graph the relationship between actual and normalized values. The
relationship is very nonlinear.

AV = linspace(-5,6,250);
NV = actual2normalized(au,AV);

plot(NV,AV,0,au.NominalValue,'ro',-1,au.Range(1),'bo',1,au.Range(2),'b
grid, xlabel('Normalized Values'), ylabel('Actual Values')
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The red circle shows the nominal value (normalized value = 0). The
blue circles show the values at the edges of the uncertainty range
(normalized values = –1, 1).

Algorithms For details on the normalize distance, see “Normalizing Functions for
Uncertain Elements” in the Robust Control Toolbox™ User’s Guide.

See Also normalized2actual | robuststab | robustperf
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Purpose Convert affine parameter-dependent models to polytopic models

Syntax polsys = aff2pol(affsys)

Description aff2pol derives a polytopic representation polsys of the affine
parameter-dependent system

E p x A p x B p u( ) ( ) ( ) = + (3-1)

y C p x D p u= +( ) ( ) (3-2)

where p = (p1, . . . , pn) is a vector of uncertain or time-varying real
parameters taking values in a box or a polytope. The description affsys
of this system should be specified with psys.

The vertex systems of polsys are the instances of Equation 3-1 and
Equation 3-2 at the vertices pex of the parameter range, i.e., the SYSTEM
matrices

A p jE p B p
C p D p

ex ex ex

ex ex

( ) ( ) ( )
( ) ( )
+⎛

⎝
⎜

⎞

⎠
⎟

for all corners pex of the parameter box or all vertices pex of the polytope
of parameter values.

See Also psys | pvec | uss
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Purpose State-space or transfer function plant augmentation for use in weighted
mixed-sensitivity H∞ and H2 loopshaping design

Syntax P = AUGW(G,W1,W2,W3)

Description P = AUGW(G,W1,W2,W3) computes a state-space model of an augmented
LTI plant P(s) with weighting functions W1(s), W2(s), and W3(s)
penalizing the error signal, control signal and output signal respectively
(see block diagram) so that the closed-loop transfer function matrix
is the weighted mixed sensitivity

Ty u
W S
W R
W T

1 1

1

2

3

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

where S, R and T are given by

S I GK

R K I GK

T GK I GK

= +

= +

= +

−

−

−

( )

( )

( )

1

1

1

The LTI systems S and T are called the sensitivity and complementary
sensitivity, respectively.
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Plant Augmentation

For dimensional compatibility, each of the three weights W1, W2 and
W3 must be either empty, a scalar (SISO) or have respective input
dimensions Ny, Nu, and Ny where G is Ny-by-Nu. If one of the weights
is not needed, you may simply assign an empty matrix [ ]; e.g., P =
AUGW(G,W1,[],W3) is P(s) as in the “Algorithms” on page 3-9 section
below, but without the second row (without the row containing W2).

Algorithms The augmented plant P(s) produced by is

P s

W W G
W

W G
I G

( ) =

−

−

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

1 1

2

3

0
0

Partitioning is embedded via P=mktito(P,NY,NU), which sets the
InputGroup and OutputGroup properties of P as follows

[r,c]=size(P);
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P.InputGroup = struct('U1',1:c-NU,'U2',c-NU+1:c);
P.OutputGroup = struct('Y1',1:r-NY,'Y2',r-NY+1:r);

Examples s=zpk('s'); G=(s-1)/(s+1);

W1=0.1*(s+100)/(100*s+1); W2=0.1; W3=[];

P=augw(G,W1,W2,W3);

[K,CL,GAM]=hinfsyn(P); [K2,CL2,GAM2]=h2syn(P);

L=G*K; S=inv(1+L); T=1-S; sigma(S,'k',GAM/W1,'k-.',T,'r',GAM*G/W2,'r-.')

legend('S = 1/(1+L)','GAM/W1', 'T=L/(1+L)','GAM*G/W2',2)

Limitations The transfer functions G, W1, W2 and W3 must be proper, i.e., bounded
as s → ∞ or, in the discrete-time case, as z → ∞ . Additionally, W1,
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W2 and W3 should be stable. The plant G should be stabilizable and
detectable; else, P will not be stabilizable by any K.

See Also h2syn | hinfsyn | mixsyn | mktito
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Purpose Balanced model truncation via square root method

Syntax GRED = balancmr(G)
GRED = balancmr(G,order)
[GRED,redinfo] = balancmr(G,key1,value1,...)
[GRED,redinfo] = balancmr(G,order,key1,value1,...)

Description balancmr returns a reduced order model GRED of G and a struct array
redinfo containing the error bound of the reduced model and Hankel
singular values of the original system.

The error bound is computed based on Hankel singular values of G. For
a stable system these values indicate the respective state energy of the
system. Hence, reduced order can be directly determined by examining
the system Hankel singular values, σι.

With only one input argument G, the function will show a Hankel
singular value plot of the original model and prompt for model order
number to reduce.

This method guarantees an error bound on the infinity norm of the
additive error G-GRED ∞ for well-conditioned model reduced problems
[1]:

G Gred i
k

n
− ≤∞

+
∑2

1
σ

This table describes input arguments for balancmr.

Argument Description

G LTI model to be reduced. Without any other
inputs, balancmr will plot the Hankel singular
values of G and prompt for reduced order

ORDER (Optional) Integer for the desired order of the
reduced model, or optionally a vector packed with
desired orders for batch runs
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A batch run of a serial of different reduced order models can be
generated by specifying order = x:y, or a vector of positive integers.
By default, all the anti-stable part of a system is kept, because from
control stability point of view, getting rid of unstable state(s) is
dangerous to model a system.

'MaxError' can be specified in the same fashion as an alternative for
'Order'. In this case, reduced order will be determined when the sum
of the tails of the Hankel singular values reaches the 'MaxError'.

This table lists the input arguments 'key' and its 'value'.

Argument Value Description

'MaxError' Real number or
vector of different
errors

Reduce to achieve H∞
error. When present,
'MaxError'overides ORDER
input.

'Weights' {Wout,Win} cell
array

Optimal 1-by-2 cell array of
LTI weights Wout (output)
and Win (input). Defaults are
both identity. Weights must
be invertible.

'Display' 'on' or 'off' Display Hankel singular
plots (default 'off').

'Order' Integer, vector or
cell array

Order of reduced model. Use
only if not specified as 2nd
argument.

Weights on the original model input and/or output can make the model
reduction algorithm focus on some frequency range of interests. But
weights have to be stable, minimum phase and invertible.

This table describes output arguments.
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Argument Description

GRED LTI reduced order model. Becomes multidimensional
array when input is a serial of different model order
array

REDINFO A STRUCT array with three fields:

• REDINFO.ErrorBound (bound on G-GRED ∞)

• REDINFO.StabSV (Hankel SV of stable part of G)

• REDINFO.UnstabSV (Hankel SV of unstable part of G)

G can be stable or unstable, continuous or discrete.

Algorithms Given a state space (A,B,C,D) of a system and k, the desired reduced
order, the following steps will produce a similarity transformation to
truncate the original state-space system to the kth order reduced model.

1 Find the SVD of the controllability and observability grammians

P = Up Σp Vp
T

Q = UqΣq Vq
T

2 Find the square root of the grammians (left/right eigenvectors)

Lp = Up Σp
½

Lo = Uq Σq
½

3 Find the SVD of (Lo
TLp)

Lo
T Lp = U Σ VT

4 Then the left and right transformation for the final kth order reduced
model is
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SL,BIG = Lo U(:,1:k) Σ(1;k,1:k))
–½

SR,BIG = Lp V(:,1:k) Σ(1;k,1:k))
–½

5 Finally,

ˆ ˆ

ˆ ˆ
, , ,

,

A B

C D

S AS S B

CS D
L BIG
T

R BIG L BIG
T

R BIG

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

The proof of the square root balance truncation algorithm can be found
in [2].

Examples Given a continuous or discrete, stable or unstable system, G, the
following commands can get a set of reduced order models based on
your selections:

rand('state',1234); randn('state',5678);G = rss(30,5,4);
[g1, redinfo1] = balancmr(G); % display Hankel SV plot

% and prompt for order (try 15:20)
[g2, redinfo2] = balancmr(G,20);
[g3, redinfo3] = balancmr(G,[10:2:18]);
[g4, redinfo4] = balancmr(G,'MaxError',[0.01, 0.05]);
rand('state',12345); randn('state',6789);
wt1 = rss(6,5,5); wt1.d = eye(5)*2;
wt2 = rss(6,4,4); wt2.d = 2*eye(4);
[g5, redinfo5] = balancmr(G, [10:2:18], 'weight',{wt1,wt2});
for i = 1:5

figure(i); eval(['sigma(G,g' num2str(i) ');']);
end

References [1] Glover, K., “All Optimal Hankel Norm Approximation of Linear
Multivariable Systems, and Their Lµ-error Bounds,“ Int. J. Control,
Vol. 39, No. 6, 1984, p. 1145-1193
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[2] Safonov, M.G., and R.Y. Chiang, “A Schur Method for Balanced
Model Reduction,” IEEE Trans. on Automat. Contr., Vol. 34, No. 7,
July 1989, p. 729-733

See Also reduce | schurmr | hankelmr | bstmr | ncfmr | hankelsv
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Purpose Multivariable bilinear transform of frequency (s or z)

Syntax GT = bilin(G,VERS,METHOD,AUG)

Description bilin computes the effect on a system of the frequency-variable
substitution,

s
z
z

= +
+

α δ
γ β

The variable VERS denotes the transformation direction:

VERS= 1, forward transform (s→z) or ( )s s→  .

VERS=-1, reverse transform (z→s) or ( )s s→  .

This transformation maps lines and circles to circles and lines in the
complex plane. People often use this transformation to do sampled-data
control system design [1] or, in general, to do shifting of jω modes [2],
[3], [4].

Bilin computes several state-space bilinear transformations such as
backward rectangular, etc., based on the METHOD you select

Bilinear Transform Types

Method Type of bilinear transform

'BwdRec' backward rectangular:

s
z
Tz

= −1

AUG = T, the sampling period.

'FwdRec' forward rectangular:

s
z
T

= −1
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Bilinear Transform Types (Continued)

Method Type of bilinear transform

AUG = T, the sampling period.

'S_Tust' shifted Tustin:

s
T

z
z
h

= −

+

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

2 1

1

AUG = [T h], is the “shift” coefficient.

'S_ftjw' shifted jω-axis, bilinear pole-shifting,
continuous-time to continuous-time:

s
s p

s p
=

+
+



1

21 /

AUG = [p2 p1].

'G_Bilin' METHOD = 'G_Bilin', general bilinear,
continuous-time to continuous-time:

s
s
s

= +
+

α δ
γ β




AUG = α β γ δ   [ ] .

Examples Example 1. Tustin continuous s-plane to discrete z-plane
transforms

Consider the following continuous-time plant (sampled at 20 Hz):

A B C D=
−

−
⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥

1 1
0 2

1 0
1 1

1 0
0 1

0 0
0 0

, , , ;    TTs = 0 05.
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Following is an example of four common “continuous to discrete” bilin
transformations for the sampled plant:

A= [-1 1; 0 -2]; B=[1 0; 1 1];
C= [1 0; 0 1]; D=[0 0; 0 0];
sys = ss(A,B,C,D); % ANALOG
Ts=0.05; % sampling time
[syst] = c2d(sys,Ts,'tustin'); % Tustin
[sysp] = c2d(sys,Ts,'prewarp',40); % Pre-warped Tustin
[sysb] = bilin(sys,1,'BwdRec',Ts); % Backward Rectangular
[sysf] = bilin(sys,1,'FwdRec',Ts); % Forward Rectangular
w = logspace(-2,3,50); % frequencies to plot
sigma(sys,syst,sysp,sysb,sysf,w);

Comparison of Four Bilinear Transforms from Example 1

Example 2. Bilinear continuous to continuous pole-shifting
’S_ftjw’

Design an H mixed-sensitivity controller for the ACC Benchmark plant
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G s
s s

( )
( )

=
+

1

22 2

such that all closed-loop poles lie inside a circle in the left half of the
s-plane whose diameter lies on between points [p1,p2]=[–12,–2]:

p1=-12; p2=-2; s=zpk('s');
G=ss(1/(s^2*(s^2+2))); % original unshifted plant
Gt=bilin(G,1,'Sft_jw',[p1 p2]); % bilinear pole shifted plant Gt
Kt=mixsyn(Gt,1,[],1); % bilinear pole shifted controller
K =bilin(Kt,-1,'Sft_jw',[p1 p2]); % final controller K

As shown in the following figure, closed-loop poles are placed in the left
circle [p1 p2]. The shifted plant, which has its non-stable poles shifted
to the inside the right circle, is

G s
s

s s s
t ( ) .

( )

( ) ( . . )
= × −

− − +
−4 765 10

12

2 4 274 5 918
5

4

2 2
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'S_ftjw' final closed-loop poles are inside the left [p1,p2] circle

Algorithms bilin employs the state-space formulae in [3]:

A B
C D

A I I A I A B

C I A

b b

b b

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

− + −( ) −( )
−

− −( )( )

( )

β δ α γ αβ γδ α γ

α γ

1 1

−− −+ −

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥1 1D C I A Bγ α γ( )

References [1] Franklin, G.F., and J.D. Powell, Digital Control of Dynamics System,
Addison-Wesley, 1980.
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[2] Safonov, M.G., R.Y. Chiang, and H. Flashner, “H∞ Control Synthesis
for a Large Space Structure,” AIAA J. Guidance, Control and Dynamics,
14, 3, p. 513-520, May/June 1991.

[3] Safonov, M.G., “Imaginary-Axis Zeros in Multivariable H∞ Optimal
Control”, in R.F. Curtain (editor),Modelling, Robustness and Sensitivity
Reduction in Control Systems, p. 71-81, Springer-Varlet, Berlin, 1987.

[4] Chiang, R.Y., and M.G. Safonov, “H∞ Synthesis using a Bilinear Pole
Shifting Transform,” AIAA, J. Guidance, Control and Dynamics, vol.
15, no. 5, p. 1111-1117, September-October 1992.

See Also c2d | d2c | sectf
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Purpose Balanced stochastic model truncation (BST) via Schur method

Syntax GRED = bstmr(G)
GRED = bstmr(G,order)
[GRED,redinfo] = bstmr(G,key1,value1,...)
[GRED,redinfo] = bstmr(G,order,key1,value1,...)

Description bstmr returns a reduced order model GRED of G and a struct array
redinfo containing the error bound of the reduced model and Hankel
singular values of the phase matrix of the original system [2].

The error bound is computed based on Hankel singular values of
the phase matrix of G. For a stable system these values indicate the
respective state energy of the system. Hence, reduced order can be
directly determined by examining these values.

With only one input argument G, the function will show a Hankel
singular value plot of the phase matrix of G and prompt for model order
number to reduce.

This method guarantees an error bound on the infinity norm of the
multiplicative GRED–1(G-GRED) ∞ or relative error G-–1(G-GRED)
∞ for well-conditioned model reduction problems [1]:

G G Gred i i i
k

n
−

∞
+

− ≤ + + +( ) −∏1 2

1

1 2 1 1( ) ( )σ σ σ

This table describes input arguments for bstmr.

Argument Description

G LTI model to be reduced (without any other inputs
will plot its Hankel singular values and prompt
for reduced order)

ORDER (Optional) an integer for the desired order of the
reduced model, or a vector of desired orders for
batch runs
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A batch run of a serial of different reduced order models can be
generated by specifying order = x:y, or a vector of integers. By
default, all the anti-stable part of a system is kept, because from control
stability point of view, getting rid of unstable state(s) is dangerous to
model a system.

'MaxError' can be specified in the same fashion as an alternative
for 'ORDER'. In this case, reduced order will be determined when the
accumulated product of Hankel singular values shown in the above
equation reaches the 'MaxError'.

Argument Value Description

'MaxError' Real number
or vector of
different errors

Reduce to achieve H∞ error.

When present,
'MaxError'overides ORDER
input.

'Display' 'on' or 'off' Display Hankel singular plots
(default 'off').

'Order' Integer, vector or
cell array

Order of reduced model. Use
only if not specified as 2nd
argument.

This table describes output arguments.

Argument Description

GRED LTI reduced order model. Become multi-dimension
array when input is a serial of different model
order array.

REDINFO A STRUCT array with three fields:

• REDINFO.ErrorBound (bound on G–1(G-GRED)
∞)

• REDINFO.StabSV (Hankel SV of stable part of G)
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Argument Description

• REDINFO.UnstabSV (Hankel SV of unstable part
of G)

G can be stable or unstable, continuous or discrete.

Algorithms Given a state space (A,B,C,D) of a system and k, the desired reduced
order, the following steps will produce a similarity transformation to
truncate the original state-space system to the kth order reduced model.

1 Find the controllability grammian P and observability grammian Q
of the left spectral factor Φ = Γ(σ)Γ*(–σ) = Ω*(–σ)Ω(σ) by solving the
following Lyapunov and Riccati equations

AP + PAT + BBT = 0

BW = PC
T + BDT

QA + AT Q + (QBW – C
T) (–DDT) (QBW – C

T)T = 0

2 Find the Schur decomposition for PQ in both ascending and
descending order, respectively,

V PQV

V PQV

A
T

A

n

D
T

D

n

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

λ

λ

λ

λ

1

1

0
0 0

0
0 0

 

 

 

 

3 Find the left/right orthonormal eigen-bases of PQ associated with
the kth big Hankel singular values of the all-pass phase matrix
(W*(s))–1G(s).
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k

V V V

V V V

A R SMALL L BIG

k

D R BIG L SMALL

=

=

[ , ]

[ , ]

, ,

, ,

 

 

4 Find the SVD of (VT L,BIGVR,BIG) = U Σ ςΤ

5 Form the left/right transformation for the final kth order reduced
model

SL,BIG = VL,BIG U Σ(1:k,1:k)–½

SR,BIG = VR,BIG V Σ(1:k,1:k)–½

6 Finally,

ˆ ˆ

ˆ ˆ
, , ,

,

A B

C D

S AS S B

CS D
L BIG
T

R BIG L BIG
T

R BIG

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

The proof of the Schur BST algorithm can be found in [1].
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Note The BST model reduction theory requires that the original model
D matrix be full rank, for otherwise the Riccati solver fails. For any
problem with strictly proper model, you can shift the jω-axis via bilin
such that BST/REM approximation can be achieved up to a particular
frequency range of interests. Alternatively, you can attach a small but
full rank D matrix to the original problem but remove the D matrix of
the reduced order model afterwards. As long as the size of D matrix is
insignificant inside the control bandwidth, the reduced order model
should be fairly close to the true model. By default, the bstmr program
will assign a full rank D matrix scaled by 0.001 of the minimum
eigenvalue of the original model, if its D matrix is not full rank to begin
with. This serves the purpose for most problems if user does not want to
go through the trouble of model pretransformation.

Examples Given a continuous or discrete, stable or unstable system, G, the
following commands can get a set of reduced order models based on
your selections:

rand('state',1234); randn('state',5678);
G = rss(30,5,4); G.d = zeros(5,4);
[g1, redinfo1] = bstmr(G); % display Hankel SV plot

% and prompt for order (try 15:20)
[g2, redinfo2] = bstmr(G,20);
[g3, redinfo3] = bstmr(G,[10:2:18]);
[g4, redinfo4] = bstmr(G,'MaxError',[0.01, 0.05]);
for i = 1:4

figure(i); eval(['sigma(G,g' num2str(i) ');']);
end

References [1] Zhou, K., “Frequency-weighted model reduction with L∞ error
bounds,” Syst. Contr. Lett., Vol. 21, 115-125, 1993.

[2] Safonov, M.G., and R.Y. Chiang, “Model Reduction for Robust
Control: A Schur Relative Error Method,” International J. of Adaptive
Control and Signal Processing, Vol. 2, p. 259-272, 1988.
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See Also reduce | balancmr | hankelmr | schurmr | ncfmr | hankelsv
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Purpose Replace ureal atoms by summations of ureal and ucomplex (or
ultidyn) atoms

Syntax MC = complexify(M,alpha)
MC = complexify(M,alpha,'ultidyn')

Description The command complexify replaces ureal atoms with sums of ureal
and ucomplex atoms using usubs. Optionally, the sum can consist of a
ureal and ultidyn atom.

complexify is used to improve the conditioning of robust stability
calculations (robuststab) for situations when there are predominantly
ureal uncertain elements.

MC = complexify(M,alpha) results in each ureal atom in MC having
the same Name and NominalValue as the corresponding ureal atom in
M. If Range is the range of one ureal atom from M, then the range of the
corresponding ureal atom in MC is

[Range(1)+alpha*diff(Range)/2 Range(2)-alpha*diff(Range)/2]

The net effect is that the same real range is covered with a real and
complex uncertainty. The real parameter range is reduced by equal
amounts at each end, and alpha represents (in a relative sense) the
reduction in the total range. The ucomplex atom will add this reduction
in range back into MC, but as a ball with real and imaginary parts.

The ucomplex atom has NominalValue of 0, and Radius equal to
alpha*diff(Range). Its name is the name of the original ureal atom,
appended with the characters '_cmpxfy'.

MC = complexify(M,alpha,'ultidyn') is the same, except that
gain-bounded ultidyn atoms are used instead of ucomplex atoms. The
ultidyn atom has its Bound equal to alpha*diff(Range).

Examples See “Getting Reliable Estimates of Robustness Margins” for an example
of how complexify is used in robustness analysis.

For illustrative purposes only, create a uncertain real parameter, cast it
to a uncertain matrix, and apply a 10% complexification. Finally, make
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a scatter plot of the values that the complexified matrix (scalar) can
take as well as the values of the original uncertain real parameter.

a = umat(ureal('a',2.25,'Range',[1.5 3]));
b = complexify(a,.1);
as = usample(a,200);
bs = usample(b,4000);
plot(real(bs(:)),imag(bs(:)),'.',real(as(:)),imag(as(:)),'r.')

See Also icomplexify | robuststab
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Purpose Approximately solve constant-matrix, upper bound µ-synthesis problem

Syntax [QOPT,BND] = cmsclsyn(R,U,V,BlockStructure);
[QOPT,BND] = cmsclsyn(R,U,V,BlockStructure,opt);
[QOPT,BND] = cmsclsyn(R,U,V,BlockStructure,opt,qinit);
[QOPT,BND] = cmsclsyn(R,U,V,BlockStructure,opt,'random',N)

Description cmsclsyn approximately solves the constant-matrix, upper bound
µ-synthesis problem by minimization,

minQ Cr t R UQV∈ × +( )μΔ

for given matrices R Cnxm, U Cnxr, V Ctxm, and a set Δ ⊂ Cmxn. This
applies to constant matrix data in R, U, and V.

[QOPT,BND] = cmsclsyn(R,U,V,BlockStructure) minimizes, by
choice of Q. QOPT is the optimum value of Q, the upper bound of
mussv(R+U*Q*V,BLK), BND. The matrices R,U and V are constant
matrices of the appropriate dimension. BlockStructure is a matrix
specifying the perturbation blockstructure as defined for mussv.

[QOPT,BND] = cmsclsyn(R,U,V,BlockStructure,OPT) uses the
options specified by OPT in the calls to mussv. See mussv for more
information. The default value for OPT is 'cUsw'.

[QOPT,BND] = cmsclsyn(R,U,V,BlockStructure,OPT,QINIT)
initializes the iterative computation from Q = QINIT. Because of the
nonconvexity of the overall problem, different starting points often yield
different final answers. If QINIT is an N-D array, then the iterative
computation is performed multiple times - the i’th optimization is
initialized at Q = QINIT(:,:,i). The output arguments are associated
with the best solution obtained in this brute force approach.

[QOPT,BND] = cmsclsyn(R,U,V,BlockStructure,OPT,'random',N)
initializes the iterative computation from N random instances of QINIT.
If NCU is the number of columns of U, and NRV is the number of rows of
V, then the approximation to solving the constant matrix µ synthesis
problem is two-fold: only the upper bound for µ is minimized, and the
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minimization is not convex, hence the optimum is generally not found.
If U is full column rank, or V is full row rank, then the problem can (and
is) cast as a convex problem, [Packard, Zhou, Pandey and Becker], and
the global optimizer (for the upper bound for µ) is calculated.

Algorithms The cmsclsyn algorithm is iterative, alternatively holding Q fixed, and
computing the mussv upper bound, followed by holding the upper bound
multipliers fixed, and minimizing the bound implied by choice of Q. If
U or V is square and invertible, then the optimization is reformulated
(exactly) as an linear matrix inequality, and solved directly, without
resorting to the iteration.

References Packard, A.K., K. Zhou, P. Pandey, and G. Becker, “A collection of
robust control problems leading to LMI’s,” 30th IEEE Conference on
Decision and Control, Brighton, UK, 1991, p. 1245–1250.

See Also dksyn | hinfsyn | mussv | robuststab | robustperf
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Purpose Coprime stability margin of plant-controller feedback loop

Syntax [MARG,FREQ] = cpmargin(P,C)
[MARG,FREQ] = cpmargin(P,C,TOL)

Description [MARG,FREQ] = cpmargin(P,C) calculates the normalized coprime
factor/gap metric robust stability of the multivariable feedback loop
consisting of C in negative feedback with P. C should only be the
compensator in the feedback path, not any reference channels, if it is a
two degree-of-freedom (2-Dof) architecture. The output MARG contains
upper and lower bound for the normalized coprime factor/gap metric
robust stability margin. FREQ is the frequency associated with the
upper bound.

[MARG,FREQ] = cpmargin(P,C,TOL) specifies a relative accuracy TOL
for calculating the normalized coprime factor/gap metric robust stability
margin. (TOL=1e-3 by default).

See Also gapmetric | wcmargin
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Purpose Reduced order model

Syntax [sysr,syse,gain] = dcgainmr(sys,ord)

Description [sysr,syse,gain] = dcgainmr(sys,ord) returns a reduced order
model of a continuous-time LTI system SYS by truncating modes with
least DC gain.

Specify your LTI continuous-time system in sys. The order is specified
in ord.

This function returns:

• sysr—The reduced order models (a multidimensional array if sys is
an LTI array)

• syse—The difference between sys and sysr (syse=sys-sysr)

• gain—The g-factors (dc-gains)

The DC gain of a complex mode

(1/(s+p))*c*b'

is defined as

norm(b)*norm(c)/abs(p)

See Also reduce
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Purpose Quadratic decay rate of polytopic or affine P-systems

Syntax [drate,P] = decay(ps,options)

Description For affine parameter-dependent systems

E(p) x = A(p)x, p(t) = (p1(t), . . . , pn(t))

or polytopic systems

E(t) x = A(t)x, (A, E) Co{(A1, E1), . . ., (An, En)}, t) x = A(t)x, (A,
E) Co{(A1, E1), . . ., (An, En)},

decay returns the quadratic decay rate drate, i.e., the smallest α R
such that

ATQE + EQAT < αQ

holds for some Lyapunov matrix Q > 0 and all possible values of (A, E).
Two control parameters can be reset via options(1) and options(2):

• If options(1)=0 (default), decay runs in fast mode, using the least
expensive sufficient conditions. Set options(1)=1 to use the least
conservative conditions.

• options(2) is a bound on the condition number of the Lyapunov
matrix P. The default is 109.

See Also quadstab | pdlstab | psys
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Purpose Describe how entries of matrix variable X relate to decision variables

Syntax decinfo(lmisys)
decX = decinfo(lmisys,X)

Description The function decinfo expresses the entries of a matrix variable X in
terms of the decision variables x1, . . ., xN. Recall that the decision
variables are the free scalar variables of the problem, or equivalently,
the free entries of all matrix variables described in lmisys. Each entry
of X is either a hard zero, some decision variable xn, or its opposite –xn.

If X is the identifier of X supplied by lmivar, the command

decX = decinfo(lmisys,X)

returns an integer matrix decX of the same dimensions as X whose
(i, j) entry is

• 0 if X(i, j) is a hard zero

• n if X(i, j) = xn (the n-th decision variable)

• –n if X(i, j) = –xn

decX clarifies the structure of X as well as its entry-wise dependence
on x1, . . ., xN. This is useful to specify matrix variables with atypical
structures (see lmivar).

decinfo can also be used in interactive mode by invoking it with a
single argument. It then prompts the user for a matrix variable and
displays in return the decision variable content of this variable.

Examples Example 1

Consider an LMI with two matrix variables X and Y with structure:

• X = x I3 with x scalar

• Y rectangular of size 2-by-1

If these variables are defined by
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setlmis([])
X = lmivar(1,[3 0])
Y = lmivar(2,[2 1])
:
:

lmis = getlmis

the decision variables in X and Y are given by

dX = decinfo(lmis,X)

dX =
1 0 0
0 1 0
0 0 1

dY = decinfo(lmis,Y)

dY =
2
3

This indicates a total of three decision variables x1, x2, x3 that are
related to the entries of X and Y by

X
x

x
x

Y
x
x

=
⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

=
⎛

⎝
⎜

⎞

⎠
⎟

1

1

1

2
0 0

0 0
0 0

3
,

Note that the number of decision variables corresponds to the number
of free entries in X and Y when taking structure into account.

Example 2

Suppose that the matrix variable X is symmetric block diagonal with
one 2-by-2 full block and one 2-by-2 scalar block, and is declared by

setlmis([])
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X = lmivar(1,[2 1;2 0])
:

lmis = getlmis

The decision variable distribution in X can be visualized interactively
as follows:

decinfo(lmis)

There are 4 decision variables labeled x1 to x4 in this problem.

Matrix variable Xk of interest (enter k between 1 and 1, or 0 to quit):

?> 1

The decision variables involved in X1 are among {-x1,...,x4}.

Their entry-wise distribution in X1 is as follows

(0,j>0,-j<0 stand for 0,xj,-xj, respectively):

X1 :

1 2 0 0

2 3 0 0

0 0 4 0

0 0 0 4

*********

Matrix variable Xk of interest (enter k between 1 and 1, or 0 to quit):

?> 0

See Also lmivar | mat2dec | dec2mat
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Purpose Total number of decision variables in system of LMIs

Syntax ndec = decnbr(lmisys)

Description The function decnbr returns the number ndec of decision variables
(free scalar variables) in the LMI problem described in lmisys. In other
words, ndec is the length of the vector of decision variables.

Examples For an LMI system lmis with two matrix variables X and Y such that

• X is symmetric block diagonal with one 2-by-2 full block, and one
2-by-2 scalar block

• Y is 2-by-3 rectangular,

the number of decision variables is

ndec = decnbr(LMIs)

ndec =
10

This is exactly the number of free entries in X and Y when taking
structure into account (see decinfo for more details).

See Also dec2mat | decinfo | mat2dec
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Purpose Given values of decision variables, derive corresponding values of
matrix variables

Syntax valX = dec2mat(lmisys,decvars,X)

Description Given a value decvars of the vector of decision variables, dec2mat
computes the corresponding value valX of the matrix variable with
identifier X. This identifier is returned by lmivar when declaring the
matrix variable.

Recall that the decision variables are all free scalar variables in the LMI
problem and correspond to the free entries of the matrix variables X1, . .
., XK. Since LMI solvers return a feasible or optimal value of the vector
of decision variables, dec2mat is useful to derive the corresponding
feasible or optimal values of the matrix variables.

Examples See the description of feasp.

See Also mat2dec | decnbr | decinfo
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Purpose Help specify cTx objectives for mincx solver

Syntax [V1,...,Vk] = defcx(lmisys,n,X1,...,Xk)

Description defcx is useful to derive the c vector needed by mincx when the objective
is expressed in terms of the matrix variables.

Given the identifiers X1,...,Xk of the matrix variables involved in this
objective, defcx returns the values V1,...,Vk of these variables when
the n-th decision variable is set to one and all others to zero.

See Also mincx | decinfo
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Purpose Remove LMI from system of LMIs

Syntax newsys = dellmi(lmisys,n)

Description dellmi deletes the n-th LMI from the system of LMIs described in
lmisys. The updated system is returned in newsys.

The ranking n is relative to the order in which the LMIs were declared
and corresponds to the identifier returned by newlmi. Since this
ranking is not modified by deletions, it is safer to refer to the remaining
LMIs by their identifiers. Finally, matrix variables that only appeared
in the deleted LMI are removed from the problem.

Examples Suppose that the three LMIs

A X X A Q

A X X A Q

A X X A Q

T

T

T

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

0

0

0

+ + <

+ + <

+ + <

have been declared in this order, labeled LMI1, LMI2, LMI3 with newlmi,
and stored in lmisys. To delete the second LMI, type

lmis = dellmi(lmisys,LMI2)

lmis now describes the system of LMIs

A X X A Q

A X X A Q

T

T
1 1 1 1 1

3 3 3 3 3

0

0

+ + <

+ + <

and the second variable X2 has been removed from the problem since it
no longer appears in the system.

To further delete LMI3 from the system, type

lmis = dellmi(lmis,LMI3)

3-42



dellmi

or equivalently

lmis = dellmi(lmis,3)

Note that the system has retained its original ranking after the first
deletion.

See Also newlmi | lmiedit | lmiinfo
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Purpose Remove one matrix variable from LMI problem

Syntax newsys = delmvar(lmisys,X)

Description delmvar removes the matrix variable X with identifier X from the list
of variables defined in lmisys. The identifier X should be the second
argument returned by lmivar when declaring X. All terms involving X
are automatically removed from the list of LMI terms. The description
of the resulting system of LMIs is returned in newsys.

Examples Consider the LMI

0 <
+ + +

+ − +

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

A Y B YA Q CX D

X C D X X

T T

T T T T( )

involving two variables X and Y with identifiers X and Y. To delete the
variable X, type

lmisys = delmvar(lmisys,X)

Now lmisys describes the LMI

0
0

<
+ +⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

A YB B YA Q D

D

T T

T

with only one variable Y. Note that Y is still identified by the label Y.

See Also lmivar | setmvar | lmiinfo
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Purpose Diagonalize vector of uncertain matrices and systems

Syntax v = diag(x)

Description If x is a vector of uncertain system models or matrices, diag(x) puts x
on the main diagonal. If x is a matrix of uncertain system models or
matrices, diag(x) is the main diagonal of x. diag(diag(x)) is a
diagonal matrix of uncertain system models or matrices.

Examples The statement produces a diagonal system mxg of size 4-by-4. Given
multivariable system xx, a vector of the diagonal elements of xxg is
found using diag.

x = rss(3,4,1);
xg = frd(x,logspace(-2,2,80));
size(xg)

FRD model with 4 output(s) and 1 input(s), at 80 frequency point(s).

mxg = diag(xg);
size(mxg)
FRD model with 4 output(s) and 4 input(s), at 80 frequency point(s).

xxg = [xg(1:2,1) xg(3:4,1)];
m = diag(xxg);
size(m)
FRD model with 2 output(s) and 1 input(s), at 80 frequency point(s).

See Also append

3-45



dkitopt

Purpose Create options object for use with dksyn

Syntax opt = dkitopt
opt = dkitopt('name1',value1,'name2',value2,...)

Description opt=dkitopt creates an options object opt of class dkitopt, used to
define user-specified options in the µ-synthesis command dksyn. All
properties of opt are set to their default values.

opt = dkitopt('name1',value1,'name2',value2,...) accepts
inputs as one or more Property/Value pairs to set user-specified values
of individual properties of opt. Property names specification is not
case-insensitive, and only enough characters to uniquely specify the
property name are required.

This table lists the dkitopt object properties.

Object Property Description

FrequencyVector Frequency vector used for analysis. Default is an
empty matrix ([]) which results in the frequency range
and number of points chosen automatically.

InitialController Controller used to initiate first iteration. Default is
an empty SS object.

AutoIter Automated µ-synthesis mode. Default is 'on'.

DisplayWhileAutoIter Displays iteration progress in AutoIter mode. Default
is 'off'.

StartingIterationNumber Starting iteration number. Default is 1.

NumberOfAutoIterations Number of D-K iterations to perform. Default is 10.

MixedMU Accounts for real-valued uncertain parameters for
µ-synthesis. For systems with atleast one real-valued
uncertain parameter, closed-loop robust performance
may improve when the option is set to 'on'. Default
is 'off'.
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Object Property Description

AutoScalingOrder State order for fitting D-scaling and G-scaling data for
real or complex µ-synthesis. Default is [5 2], fifth order
D-scalings and second order G-scalings.

AutoIterSmartTerminate Automatic termination of iteration procedure based on
progress of design iteration. Default is 'on'.

AutoIterSmartTerminateTol Tolerance used by AutoIterSmartTerminate. Default
is 0.005.

Default Structure of property default values.

Meaning Structure text description of each property.

If the AutoIter property is set to 'off', the D-K iteration procedure
is interactive. You are prompted to fit the D-Scale data and provide
input on the control design process.

If the AutoIterSmartTerminate property is on, and a stopping criteria
(described below) is satisfied, the iteration performed by dksyn
will terminate before reaching the specified number of automated
iterations (value of NumberOfAutoIterations). The stopping criteria
involves the objective value (peak value, across frequency, of the
upper bound for µ) in the current iteration, denoted v0, as well as
the previous two iterations, (denoted v–1 and v–2) and the value of
AutoIterSmartTerminateTol. If

v v AutoIterSmartTerminateTol v0 1 0− <− *

and

v v AutoIterSmartTerminateTol v− −− <1 2 0*

then the stopping criteria is satisfied (for lack of progress). The stopping
criteria is also satisfied if

v v AutoIterSmartTerminateTol v0 1 020> +− * *
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which captures a significant increase (undesirable) in the objective.

Examples This example creates a dkitopt options object called opt with default
property values.

opt = dkitopt
Property Object Values:

FrequencyVector: []
InitialController: [0x0 ss]

AutoIter: 'on'
DisplayWhileAutoIter: 'off'

StartingIterationNumber: 1
NumberOfAutoIterations: 10

MixedMU: 'off'
AutoScalingOrder: [5 2]

AutoIterSmartTerminate: 'on'
AutoIterSmartTerminateTol: 0.0050

Default: [1x1 struct]
Meaning: [1x1 struct]

The properties can be modified directly with assignment statements:
here user-specified values for the frequency vector, the number of
iterations, and the maximum state dimension of the D-scale fittings
are set.

opt.FrequencyVector = logspace(-2,3,80);
opt.NumberOfAutoIterations = 16;
opt.AutoScalingOrder = 16;
opt
Property Object Values:

FrequencyVector: [1x80 double]
InitialController: [0x0 ss]

AutoIter: 'on'
DisplayWhileAutoIter: 'off'

StartingIterationNumber: 1
NumberOfAutoIterations: 16
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MixedMU: 'off'
AutoScalingOrder: 16

AutoIterSmartTerminate: 'on'
AutoIterSmartTerminateTol: 0.0050

Default: [1x1 struct]
Meaning: [1x1 struct]

The same property/value pairs may be set with a single call to dkitopt.

opt = dkitopt('FrequencyVector',logspace(-2,3,80),...
'NumberOfAutoIterations',16,...
'AutoScalingOrder',9);

Algorithms The dksyn command stops iterating before the total number
of automated iterations ('NumberOfAutoIterations') if
'AutoIterSmartTerminate' is set to 'on' and a stopping criterion
is satisfied. The stopping criterion involves the m(i) value of the
current ith iteration, m(i-1) and m(i-2), the previous two iterations
and the options property 'AutoIterSmartTerminateTol'. The
D-K iteration procedure automatically terminates if the difference
between each of the three µ values is less than the relative tolerance
of AutoIterSmartTerminateTol xµ(i) or the current µ value µ(i) has
increased relative to the µ value of the previous iteration µ(i–1) by
20xAutoIterSmartTerminateTol.

When the system contains some real-valued uncertain parameters and
MixedMU is set to 'on', the dksyn command takes into account that
the uncertain parameters are real and this may result in improved
robust performance.

Tutorials Control of Spring-Mass-Damper Using Mixed mu-Synthesis

See Also dksyn | h2syn | hinfsyn | mussv | robuststab | robustperf
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Purpose Robust controller design using µ-synthesis

Syntax [k,clp,bnd] = dksyn(p,nmeas,ncont)
[k,clp,bnd] = dksyn(p,nmeas,ncont,opt)
[k,clp,bnd,dkinfo] = dksyn(p,nmeas,ncont,...)
[k,clp,bnd,dkinfo] = dksyn(p,nmeas,ncont,prevdkinfo,opt)
[...] = dksyn(p)

Description [k,clp,bnd] = dksyn(p,nmeas,ncont) synthesizes a robust controller
k for the uncertain open-loop plant model p via the D-K or D-G-K
algorithm for µ-synthesis. p is an uncertain state-space uss model.
The last nmeas outputs and ncont inputs of p are assumed to be the
measurement and control channels. k is the controller, clp is the
closed-loop model and bnd is the robust closed-loop performance bound.
p, k, clp, and bnd are related as follows:

clp = lft(p,k);
bnd1 = robustperf(clp);
bnd = 1/bnd.LowerBound

[k,clp,bnd] = dksyn(p,nmeas,ncont,opt) specifies user-defined
options opt for the D-K or D-K-G algorithm. Use dkitopt to create opt.

[k,clp,bnd,dkinfo] = dksyn(p,nmeas,ncont,...) returns a log of the
algorithm execution in dkinfo. dkinfo is an N-by-1 cell array where
N is the total number of iterations performed. The ith cell contains a
structure with the following fields:

Field Description

K Controller at ith iteration, a ss object

Bnds Robust performance bound on the closed-loop
system (double)

DL Left D-scale, an ss object

DR Right D-scale, an ss object
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Field Description

GM Offset G-scale, an ss object

GR Right G-scale, an ss object

GFC Center G-scale, an ss object

MussvBnds Upper and lower µ bounds, an frd object

MussvInfo Structure returned from mussv at each iteration.

[k,clp,bnd,dkinfo] = dksyn(p,nmeas,ncont,prevdkinfo,opt)
allows you to use information from a previous dksyn
iteration. prevdkinfo is a structure from a previous attempt at
designing a robust controller using dksyn. prevdkinfo is used when the
dksyn starting iteration is not 1 (opt.StartingIterationNumber = 1)
to determine the correct D-scalings to initiate the iteration procedure.

[...] = dksyn(p) takes p as a uss object that has
two-input/two-output partitioning as defined by mktito.

Examples The following statements create a robust performance control design
for an unstable, uncertain single-input/single-output plant model. The

nominal plant model, G, is an unstable first order system
s

s −1
.

G = tf(1,[1 -1]);

The model itself is uncertain. At low frequency, below 2 rad/s, it can
vary up to 25% from its nominal value. Around 2 rad/s the percentage
variation starts to increase and reaches 400% at approximately 32 rad/s.
The percentage model uncertainty is represented by the weight Wu
which corresponds to the frequency variation of the model uncertainty
and the uncertain LTI dynamic object InputUnc.

Wu = 0.25*tf([1/2 1],[1/32 1]);
InputUnc = ultidyn('InputUnc',[1 1]);
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The uncertain plant model Gpert represents the model of the physical
system to be controlled.

Gpert = G*(1+InputUnc*Wu);

The robust stability objective is to synthesize a stabilizing LTI controller
for all the plant models parameterized by the uncertain plant model,
Gpert. The performance objective is defined as a weighted sensitivity
minimization problem. The control interconnection structure is shown
in the following figure.

The sensitivity function, S, is defined as

S
PK

=
+
1

1
where P is the plant model and K is the controller. A weighted sensitivity
minimization problem selects a weight Wp, which corresponds to the
inverse of the desired sensitivity function of the closed-loop system as
a function of frequency. Hence the product of the sensitivity weight
Wp and actual closed-loop sensitivity function is less than 1 across
all frequencies. The sensitivity weight Wp has a gain of 100 at low
frequency, begins to decrease at 0.006 rad/s, and reaches a minimum
magnitude of 0.25 after 2.4 rad/s.

Wp = tf([1/4 0.6],[1 0.006]);
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The defined sensitivity weight Wp implies that the desired disturbance
rejection should be at least 100:1 disturbance rejection at DC, rise
slowly between 0.006 and 2.4 rad/s, and allow the disturbance rejection
to increase above the open-loop level, 0.25, at high frequency.

When the plant model is uncertain, the closed-loop performance
objective is to achieve the desired sensitivity function for all plant
models defined by the uncertain plant model, Gpert. The performance
objective for an uncertain system is a robust performance objective.
A block diagram of this uncertain closed-loop system illustrating the
performance objective (closed-loop transfer function from d→e) is shown.

From the definition of the robust performance control objective, the
weighted, uncertain control design interconnection model, which
includes the robustness and performance objectives, can be constructed
and is denoted by P. The robustness and performance weights are
selected such that if the robust performance structure singular value,
bnd, of the closed-loop uncertain system, clp, is less than 1 then the
performance objectives have been achieved for all the plant models in
the model set.

You can form the uncertain transfer matrix P from [d; u] to [e; y]
using the following commands.

P = [Wp; 1 ]*[1 Gpert];
[K,clp,bnd] = dksyn(P,1,1);
bnd

bnd =
0.6819
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The controller K achieves a robust performance µ value bnd of 0.6819.
Therefore you have achieved the robust performance objectives for the
given problem.

You can use the robustperf command to analyze the closed-loop robust
performance of clp.

[rpmarg,rpmargunc,report,info] = robustperf(clp);

Enter disp(report) to display the report.

Algorithms dksyn synthesizes a robust controller via D-K iteration. The D-K
iteration procedure is an approximation to µ-synthesis control design.
The objective of µ-synthesis is to minimize the structure singular
value µ of the corresponding robust performance problem associated
with the uncertain system p. The uncertain system p is an open-loop
interconnection containing known components including the nominal
plant model, uncertain parameters, ucomplex, and unmodeled LTI
dynamics, ultidyn, and performance and uncertainty weighting
functions. You use weighting functions to include magnitude and
frequency shaping information in the optimization. The control
objective is to synthesize a stabilizing controller k that minimizes the
robust performance µ value, which corresponds to bnd.

The D-K iteration procedure involves a sequence of minimizations, first
over the controller variable K (holding the D variable associated with
the scaled µ upper bound fixed), and then over the D variable (holding
the controller K variable fixed). The D-K iteration procedure is not
guaranteed to converge to the minimum µ value, but often works well
in practice.

dksyn automates the D-K iteration procedure and the options object
dkitopt allows you to customize its behavior. Internally, the algorithm
works with the generalized scaled plant model P, which is extracted
from a uss object using the command lftdata.

The following is a list of what occurs during a single, complete step
of the D-K iteration.

3-54



dksyn

1 (In the first iteration, this step is skipped.) The µ calculation (from
the previous step) provides a frequency-dependent scaling matrix, Df.
The fitting procedure fits these scalings with rational, stable transfer
function matrices. After fitting, plots of

σ ω ω ωˆ ( ) ( , )( ) ( )D j F P K j D jf L f
−( )1

and

σ ω ω ωˆ ( ) ( , )( ) ˆ ( )D j F P K j D jf L f
−( )1

are shown for comparison.

(In the first iteration, this step is skipped.) The rational D̂ is
absorbed into the open-loop interconnection for the next controller
synthesis. Using either the previous frequency-dependent D’s or

the just-fit rational D̂ , an estimate of an appropriate value for the
H∞ norm is made. This is simply a conservative value of the scaled
closed-loop H∞ norm, using the most recent controller and either a
frequency sweep (using the frequency-dependent D’s) or a state-space
calculation (with the rational D’s).

2 (The first iteration begins at this point.) A controller is designed
using H∞ synthesis on the scaled open-loop interconnection. If you set
the DisplayWhileAutoIter field in dkitopt to 'on', the following
information is displayed:

a The progress of the γ-iteration is displayed.

b The singular values of the closed-loop frequency response are
plotted.

c You are given the option to change the frequency range. If you
change it, all relevant frequency responses are automatically
recomputed.
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d You are given the option to rerun the H∞ synthesis with a set of
modified parameters if you set the AutoIter field in dkitopt to
'off'. This is convenient if, for instance, the bisection tolerance
was too large, or if maximum gamma value was too small.

3 The structured singular value of the closed-loop system is calculated
and plotted.

4 An iteration summary is displayed, showing all the controller order,
as well as the peak value of µ of the closed-loop frequency responses.

5 The choice of stopping or performing another iteration is given.

Subsequent iterations proceed along the same lines without the need to
reenter the iteration number. A summary at the end of each iteration is
updated to reflect data from all previous iterations. This often provides
valuable information about the progress of the robust controller
synthesis procedure.

Interactive Fitting of D-Scalings

Setting the AutoIter field in dkitopt to 'off' requires that you
interactively fit the D-scales each iteration. During step 2 of the D-K
iteration procedure, you are prompted to enter your choice of options
for fitting the D-scaling data. You press return after, the following is a
list of your options.

Enter Choice (return for list):
Choices:
nd Move to Next D-Scaling
nb Move to Next D-Block

i Increment Fit Order
d Decrement Fit Order
apf Auto-PreFit
mx 3 Change Max-Order to 3
at 1.01 Change Auto-PreFit tol to 1.01
0 Fit with zeroth order
2 Fit with second order
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n Fit with n'th order
e Exit with Current Fittings
s See Status

• nd and nb allow you to move from one D-scale data to another. nd
moves to the next scaling, whereas nbmoves to the next scaling block.
For scalar D-scalings, these are identical operations, but for problems
with full D-scalings, (perturbations of the form δI) they are different.
In the (1,2) subplot window, the title displays the D-scaling block
number, the row/column of the scaling that is currently being fitted,
and the order of the current fit (with d for data when no fit exists).

• You can increment or decrement the order of the current fit (by 1)
using i and d.

• apf automatically fits each D-scaling data. The default maximum
state order of individual D-scaling is 5. The mx variable allows you
to change the maximum D-scaling state order used in the automatic
prefitting routine. mx must be a positive, nonzero integer. at allows
you to define how close the rational, scaled µ upper bound is to
approximate the actual µ upper bound in a norm sense. Setting at to
1 would require an exact fit of the D-scale data, and is not allowed.
Allowable values for at are greater than 1. This setting plays a role
(mildly unpredictable, unfortunately) in determining where in the
(D,K) space the D-K iteration converges.

• Entering a positive integer at the prompt will fit the current D-scale
data with that state order rational transfer function.

• e exits the D-scale fitting to continue the D-K iteration.

• The variable s displays a status of the current and fits.

Limitations There are two shortcomings of the D-K iteration control design
procedure:

• Calculation of the structured singular value µΔ(·) is approximated by
its upper bound. This is not a serious problem because the value of µ
and its upper bound are often close.
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• The D-K iteration is not guaranteed to converge to a global, or even
local minimum. This is a serious problem, and represents the biggest
limitation of the design procedure.

In spite of these drawbacks, the D-K iteration control design technique
appears to work well on many engineering problems. It has been
applied to a number of real-world applications with success. These
applications include vibration suppression for flexible structures, flight
control, chemical process control problems, and acoustic reverberation
suppression in enclosures.

References [1] Balas, G.J., and J.C. Doyle, “Robust control of flexible modes in the
controller crossover region,” AIAA Journal of Guidance, Dynamics and
Control, Vol. 17, no. 2, March-April, 1994, p. 370-377.

[2] Balas, G.J., A.K. Packard, and J.T. Harduvel, “Application of
µ-synthesis techniques to momentum management and attitude
control of the space station,” AIAA Guidance, Navigation and Control
Conference, New Orleans, August 1991.

[3] Doyle, J.C., K. Lenz, and A. Packard, “Design examples using
µ-synthesis: Space shuttle lateral axis FCS during reentry,” NATO ASI
Series, Modelling, Robustness, and Sensitivity Reduction in Control
Systems, vol. 34, Springer-Verlag, Berlin 1987.

[4] Packard, A., J. Doyle, and G. Balas, “Linear, multivariable robust
control with a µ perspective,” ASME Journal of Dynamic Systems,
Measurement and Control, 50th Anniversary Issue, Vol. 115, no. 2b,
June 1993, p. 310-319.

[5] Stein, G., and J. Doyle, “Beyond singular values and loopshapes,”
AIAA Journal of Guidance and Control, Vol. 14, No. 1, January, 1991,
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See Also dkitopt | h2syn | hinfsyn | mktito | mussv | robuststab |
robustperf | wcgain | wcsens | wcmargin
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Purpose Interpret disk gain and phase margins

Syntax dmplot
dmplot(diskgm)

[dgm,dpm] = dmplot

Description dmplot plots disk gain margin (dgm) and disk phase margin (dpm). Both
margins are derived from the largest disk that

• Contains the critical point (–1,0)

• Does not intersect the Nyquist plot of the open-loop response L

diskgm is the radius of this disk and a lower bound on the classical
gain margin.

dmplot(diskgm) plots the maximum allowable phase variation as a
function of the actual gain variation for a given disk gain margin diskgm
(the maximum gain variation being diskgm). The closed-loop system
is guaranteed to remain stable for all combined gain/phase variations
inside the plotted ellipse.

[dgm,dpm] = dmplot returns the data used to plot the gain/phase
variation ellipse.

Examples When you call dmplot (without an argument), the resulting plot shows a
comparison of a disk margin analysis with the classical notations of gain
and phase margins. The Nyquist plot is of the loop transfer function L(s)

L s

s

s s s
( )

( )( . )
=

+

+ + +
30

1

1 1 6 162

• The Nyquist plot of L corresponds to the blue line.

• The unit disk corresponds to the dotted red line.

• GM and PM indicate the location of the classical gain and phase
margins for the system L.
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• DGM and DPM correspond to the disk gain and phase margins,
respectively. The disk margins provide a lower bound on classical
gain and phase margins.

• The disk margin circle, represented by the dashed black line,
corresponds to the largest disk centered at (DGM + 1/DGM)/2 that
just touches the loop transfer function L. This location is indicated
by the red dot.

The x-axis corresponds to the gain variation, in dB, and the y-axis
corresponds to the phase variation allowable, in degrees. For a disk
gain margin corresponding to 3 dB (1.414), the closed-loop system is
stable for all phase and gain variations inside the blue ellipse. For
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example, the closed-loop system can simultaneously tolerate +/– 2 dB
gain variation and +/– 14 deg phase variations.

dmplot(1.414)

References Barrett, M.F., Conservatism with robustness tests for linear feedback
control systems, Ph.D. Thesis. Control Science and Dynamical Systems,
University of Minnesota, 1980.
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Blight, J.D., R.L. Dailey, and Gangsass, D., “Practical control law design
for aircraft using multivariable techniques,” International Journal of
Control, Vol. 59, No. 1, 1994, 93-137.

Bates, D., and I. Postlethwaite, Robust Multivariable Control of
Aerospace Systems, Delft University Press, Delft, The Netherlands,
ISBN: 90-407-2317-6, 2002.

See Also wcmargin
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Purpose Mouse-based tool for sketching and fitting

Syntax [sysout,pts] = drawmag(data)
[sysout,pts] = drawmag(data,init_pts)

Description drawmag interactively uses the mouse in the plot window to create pts
(the frd object) and sysout (a stable minimum-phase ss object), which
approximately fits the frequency response (magnitude) in pts.

Input arguments:

data Either a frequency response object that is plotted
as a reference, or a constant matrix of the form
[xmin xmax ymin ymax] specifying the plot window on the
data.

init_pts Optional frd objects of initial set of points

Output arguments:

sysout Stable, minimum-phase ss object that approximately
fits, in magnitude, the pts data.

pts Frequency response of points.

While drawmag is running, all interaction with the program is through
the mouse and/or the keyboard. The mouse, if there is one, must be in
the plot window. The program recognizes several commands:

• Clicking the mouse button adds a point at the cross-hairs. If the
cross-hairs are outside the plotting window, the points are plotted
when the fitting, windowing, or replotting mode is invoked. Typing
a is the same as clicking the mouse button.

• Typing r removes the point with frequency nearest that of the
cross-hairs.

• Typing any integer between 0 and 9 fits the existing points with a
transfer function of that order. The fitting routine approximately
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minimizes the maximum error in a log sense. The new fit is displayed
along with the points, and the most recent previous fit, if it exists.

• Typing w uses the cross-hair location as the initial point in creating a
window. Moving the cross-hairs and clicking the mouse or pressing
any key then gives a second point at the new cross-hair location.
These two points define a new window on the data, which is
immediately replotted. This is useful in fine tuning parts of the data.
You can call windowing repeatedly.

• Typing p simply replots the data using a window that covers all the
current data points as well as whatever was specified in in. Typically
used after windowing to view all the data.

• Typing k invokes the keyboard using the keyboard command. Be
cautious when using this option to avoid unintended changes to
variables.

See Also ginput | loglog
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Purpose Given particular instance of decision variables, evaluate all variable
terms in system of LMIs

Syntax evalsys = evallmi(lmisys,decvars)

Description evallmi evaluates all LMI constraints for a particular instance decvars
of the vector of decision variables. Recall that decvars fully determines
the values of the matrix variables X1, . . ., XK. The “evaluation” consists
of replacing all terms involving X1, . . ., XK by their matrix value. The
output evalsys is an LMI system containing only constant terms.

The function evallmi is useful for validation of the LMI solvers’ output.
The vector returned by these solvers can be fed directly to evallmi to
evaluate all variable terms. The matrix values of the left and right
sides of each LMI are then returned by showlmi.

Observation evallmi is meant to operate on the output of the LMI solvers. To
evaluate all LMIs for particular instances of the matrix variables X1, . .
., XK, first form the corresponding decision vector x with mat2dec and
then call evallmi with x as input.

Examples Consider the feasibility problem of finding X > 0 such that

ATXA – X + I < 0

where

A =
−
−

⎛

⎝
⎜

⎞

⎠
⎟

0 5 0 2
0 1 0 7

. .

. .
.

This LMI system is defined by:

setlmis([])
X = lmivar(1,[2 1]) % full symmetric X

lmiterm([1 1 1 X],A',A) % LMI #1: A'*X*A
lmiterm([1 1 1 X],-1,1) % LMI #1: -X

3-66



evallmi

lmiterm([1 1 1 0],1) % LMI #1: I
lmiterm([-2 1 1 X],1,1) % LMI #2: X
lmis = getlmis

To compute a solution xfeas, call feasp by

[tmin,xfeas] = feasp(lmis)

The result is

tmin =
-4.7117e+00

xfeas' =
1.1029e+02 -1.1519e+01 1.1942e+02

The LMI constraints are therefore feasible since tmin < 0. The solution
X corresponding to the feasible decision vector xfeas would be given
by X = dec2mat(lmis,xfeas,X).

To check that xfeas is indeed feasible, evaluate all LMI constraints
by typing

evals = evallmi(lmis,xfeas)

The left and right sides of the first and second LMIs are then given by

[lhs1,rhs1] = showlmi(evals,1)
[lhs2,rhs2] = showlmi(evals,2)

and the test

eig(lhs1-rhs1)
ans =

-8.2229e+01
-5.8163e+01

confirms that the first LMI constraint is satisfied by xfeas.
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See Also showlmi | setmvar | dec2mat | mat2dec
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Purpose Evaluate tuning requirements for tuned control system

Syntax [Hspec,fval] = evalSpec(Req,T)
[Hspec,fval] = evalSpec(Req,T,Info)

Description [Hspec,fval] = evalSpec(Req,T) returns the normalized value fval
of a tuning requirement, evaluated for a tuned control system T. The
evalSpec command also returns the transfer function Hspec used to
compute this value.

[Hspec,fval] = evalSpec(Req,T,Info) uses the Info structure
returned by systune for correct scaling of MIMO open-loop
requirements such as loop shapes and stability margins.

Input
Arguments

Req - Tuning requirement to evaluate
TuningGoal requirement object | vector of TuningGoal objects

Tuning requirement to evaluate, specified as a TuningGoal requirement
object or vector of TuningGoal objects. TuningGoal requirement objects
include:

• TuningGoal.Tracking

• TuningGoal.Gain

• TuningGoal.WeightedGain

• TuningGoal.Variance

• TuningGoal.WeightedVariance

• TuningGoal.LoopShape

• TuningGoal.Margins

• TuningGoal.Poles

• TuningGoal.StableController

T - Tuned control system
Generalized state-space model | slTunable interface object
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Tuned control system, specified as a generalized state-space (genss)
model or an slTunable interface to a Simulink model.

The control system T is typically the result of using the tuning
requirement to tune control system parameters with systune.

Example: [T,fSoft,gHard,Info] = systune(T0,SoftReq,HardReq),
where T0 is a tunable genss model

Example: [T,fSoft,gHard,Info] =
systune(ST0,SoftReq,HardReq), where ST0 is a slTunable interface
object

Info - System information
data structure returned by systune

System information, specified as the data structure returned by
systune when you use that command to tune a control system. Use
Info when validating tuned MIMO systems, to ensure that viewSpec
correctly scales open-loop requirements such as loop shapes and
stability margins.

Output
Arguments

Hspec - Transfer function associated with requirement
State-space model

Transfer function associate with the tuning requirement and used by
evalSpec to compute the evaluated requirement fval, returned as
a state-space (ss) model.

For example, suppose Req is a TuningGoal gain requirement that limits
the gain H(s) between some specified input and output to the gain
profile w(s). In that case, Hspec is given by:

Hspec s
w s

H s      1
.

fval is the peak gain of Hspec. IfH(s) satisfies the tuning requirement,
fval <= 1.
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fval - Normalized value of tuning requirement
positive scalar

Normalized value of tuning requirement, returned as a positive scalar.
The normalized value is a measure of how closely the requirement
is met in the tuned system. The tuning requirement is satisfied
if fval < 1. For information about how each type of TuningGoal
requirement is converted into a normalized value, see the reference
pages for each of the TuningGoal requirement objects.

Examples Evaluate Requirements for Tuned System

Tune a control system with systune and evaluate the tuning
requirements with evalSpec.

Create tracking, roll-off, and stability margin, and disturbance rejection
requirements for tuning the following control system.

Req1 = TuningGoal.Tracking('az ref','az',1);
Req2 = TuningGoal.Gain('delta fin','delta fin',tf(25,[1 0]));
Req3 = TuningGoal.Margins('delta fin',7,45);
MaxGain = frd([2 200 200],[0.02 2 200]);
Req4 = TuningGoal.Gain('delta fin','az',MaxGain);
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Tune the model using these tuning requirements.

open_system('rct_airframe2')

ST0 = slTunable('rct_airframe2','MIMO Controller');
addControl(ST0,'delta fin');

rng('default');
[ST1,fSoft,~,Info] = systune(ST0,[Req1,Req2,Req3,Req4]);

Final: Soft = 1.13, Hard = -Inf, Iterations = 55

ST1 is a tuned version of the slTunable interface to the control system
that contains the tuned values of the tunable parameters of the MIMO
controller in the model.

Evaluate the margin requirement for the tuned system.

[hspec,fval] = evalSpec(Req3,ST1,Info);
fval

fval =

0.5140

The normalized value of the requirement is below 1, indicating that the
tuned system satisfies the margin requirement. For more information
about how the normalized value of this requirement is calculated, see
the TuningGoal.Margins reference page.

Evaluate the tracking requirement for the tuned system.

[hspec,fval] = evalSpec(Req1,ST1,Info);
fval

fval =

1.1327
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The tracking requirement is nearly met, but the value exceeds 1,
indicating a small violation. To further assess the violation, you can use
viewSpec to examine the requirement against the tuned control system
as a function of frequency.

See Also systune | genss | viewSpecslTunable.systune | slTunable |
TuningGoal.Tracking | TuningGoal.Gain | TuningGoal.Margins
| TuningGoal.WeightedGain | TuningGoal.Variance |
TuningGoal.WeightedVariance | TuningGoal.LoopShape |
TuningGoal.Poles | TuningGoal.StableController |

Concepts • “Generalized Models”
• “Performance and Robustness Specifications for looptune”
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Purpose Compute solution to given system of LMIs

Syntax [tmin,xfeas] = feasp(lmisys,options,target)

Description The function feasp computes a solution xfeas (if any) of the system of
LMIs described by lmisys. The vector xfeas is a particular value of the
decision variables for which all LMIs are satisfied.

Given the LMI system

N LxN M R x MT T≤ ( ) , (3-3)

xfeas is computed by solving the auxiliary convex program:

Minimize t subject to NTL(x)N–MTR(x)M≤tI.

The global minimum of this program is the scalar value tmin returned
as first output argument by feasp. The LMI constraints are feasible if
tmin ≤ 0 and strictly feasible if tmin < 0. If the problem is feasible but
not strictly feasible, tmin is positive and very small. Some post-analysis
may then be required to decide whether xfeas is close enough to
feasible.

The optional argument target sets a target value for tmin. The
optimization code terminates as soon as a value of t below this target is
reached. The default value is target = 0.

Note that xfeas is a solution in terms of the decision variables and not
in terms of the matrix variables of the problem. Use dec2mat to derive
feasible values of the matrix variables from xfeas.

Control
Parameters

The optional argument options gives access to certain control
parameters for the optimization algorithm. This five-entry vector is
organized as follows:

• options(1) is not used.

• options(2) sets the maximum number of iterations allowed to be
performed by the optimization procedure (100 by default).
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• options(3) resets the feasibility radius. Setting options(3) to a
value R > 0 further constrains the decision vector x = (x1, . . ., xN) to
lie within the ball

x Ri
i

N
2 2

1
<

=
∑

In other words, the Euclidean norm of xfeas should not exceed R. The
feasibility radius is a simple means of controlling the magnitude of
solutions. Upon termination, feasp displays the f-radius saturation,
that is, the norm of the solution as a percentage of the feasibility
radius R.

The default value is R = 109. Setting options(3) to a negative value
activates the “flexible bound” mode. In this mode, the feasibility
radius is initially set to 108, and increased if necessary during the
course of optimization

• options(4) helps speed up termination. When set to an integer
value J > 0, the code terminates if t did not decrease by more than
one percent in relative terms during the last J iterations. The default
value is 10. This parameter trades off speed vs. accuracy. If set to a
small value (< 10), the code terminates quickly but without guarantee
of accuracy. On the contrary, a large value results in natural
convergence at the expense of a possibly large number of iterations.

• options(5) = 1 turns off the trace of execution of the optimization
procedure. Resetting options(5) to zero (default value) turns it
back on.

Setting option(i) to zero is equivalent to setting the corresponding
control parameter to its default value. Consequently, there is no need to
redefine the entire vector when changing just one control parameter.
To set the maximum number of iterations to 10, for instance, it suffices
to type

options=zeros(1,5) % default value for all parameters
options(2)=10
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Memory
Problems

When the least-squares problem solved at each iteration becomes
ill conditioned, the feasp solver switches from Cholesky-based to
QR-based linear algebra (see “Memory Problems” on page 3-232 for
details). Since the QR mode typically requires much more memory,
MATLAB may run out of memory and display the message

??? Error using ==> feaslv
Out of memory. Type HELP MEMORY for your options.

You should then ask your system manager to increase your swap space
or, if no additional swap space is available, set options(4) = 1. This
will prevent switching to QR and feasp will terminate when Cholesky
fails due to numerical instabilities.

Examples Consider the problem of finding P > I such that

A P PAT
1 1 0+ < (3-4)

A P PAT
2 2 0+ < (3-5)

A P PAT
3 3 0+ < (3-6)

with data

A A A1
1 2

1 3
2

0 8 1 5
1 3 2 7

3
1 4 0 9
0 7 2

=
−

−
⎛

⎝
⎜

⎞

⎠
⎟ =

−
−

⎛

⎝
⎜

⎞

⎠
⎟ =

−
−

,
. .

. .
,

. .
. .

  
00

⎛

⎝
⎜

⎞

⎠
⎟

This problem arises when studying the quadratic stability of the
polytope of matrices Co{A1, A2, A3}.

To assess feasibility with feasp, first enter the LMIs Equation 3-4
-Equation 3-6:

setlmis([])
p = lmivar(1,[2 1])

lmiterm([1 1 1 p],1,a1,'s') % LMI #1
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lmiterm([2 1 1 p],1,a2,'s') % LMI #2
lmiterm([3 1 1 p],1,a3,'s') % LMI #3
lmiterm([-4 1 1 p],1,1) % LMI #4: P
lmiterm([4 1 1 0],1) % LMI #4: I
lmis = getlmis

Then call feasp to find a feasible decision vector:

[tmin,xfeas] = feasp(lmis)

This returns tmin = -3.1363. Hence Equation 3-4 - Equation 3-6 is
feasible and the dynamical system x = A(t)x is quadratically stable for
A(t) Co{A1, A2, A3}.

To obtain a Lyapunov matrix P proving the quadratic stability, type

P = dec2mat(lmis,xfeas,p)

This returns

P =
⎛

⎝
⎜

⎞

⎠
⎟

270 8 126 4
126 4 155 1

. .

. .

It is possible to add further constraints on this feasibility problem. For
instance, you can bound the Frobenius norm of P by 10 while asking
tmin to be less than or equal to –1. This is done by

[tmin,xfeas] = feasp(lmis,[0,0,10,0,0],-1)

The third entry 10 of options sets the feasibility radius to 10 while the
third argument -1 sets the target value for tmin. This yields tmin =
-1.1745 and a matrix P with largest eigenvalue λmax(P) = 9.6912.

References The feasibility solver feasp is based on Nesterov and Nemirovski’s
Projective Method described in:
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Nesterov, Y., and A. Nemirovski, Interior Point Polynomial Methods in
Convex Programming: Theory and Applications, SIAM, Philadelphia,
1994.

Nemirovski, A., and P. Gahinet, “The Projective Method for Solving
Linear Matrix Inequalities,” Proc. Amer. Contr. Conf., 1994, Baltimore,
Maryland, p. 840–844.

The optimization is performed by the C-MEX file feaslv.mex.

See Also mincx | gevp | dec2mat
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Purpose Fit frequency response data with state-space model

Syntax B = fitfrd(A,N)
B = fitfrd(A,N,RD)
B = fitfrd(A,N,RD,WT)

Description B = fitfrd(A,N) is a state-space object with state dimension N, where
A is an frd object and N is a nonnegative integer. The frequency
response of B closely matches the D-scale frequency response data in A.

A must have either 1 row or 1 column, although it need not be 1-by-1. B
will be the same size as A. In all cases, N should be a nonnegative scalar.

B = fitfrd(A,N,RD) forces the relative degree of B to be RD. RD must be
a nonnegative integer. The default value for RD is 0. If A is a row (or
column) then RD can be a vector of the same size as well, specifying the
relative degree of each entry of B. If RD is a scalar, then it specifies the
relative degree for all entries of B. You can specify the default value for
RD by setting RD to an empty matrix.

B = fitfrd(A,N,RD,WT) uses the magnitude of WT to weight the
optimization fit criteria. WT can be a double, ss or frd. If WT is a
scalar, then it is used to weight all entries of the error criteria (A-B). If
WT is a vector, it must be the same size as A, and each individual entry
of WT acts as a weighting function on the corresponding entry of (A-B).

Examples You can use the fitfrd command to fit D-scale data. For example,
create D-scale frequency response data from a fifth-order system.

sys = tf([1 2 2],[1 2.5 1.5])*tf(1,[1 0.1]);
sys = sys*tf([1 3.75 3.5],[1 2.5 13]);
omeg = logspace(-1,1);
sysg = frd(sys,omeg);
bode(sysg,'r-');
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You can try to fit the frequency response D-scale data sysg with a
first-order system, b1. Similarly, you can fit the D-scale data with
a third-order system, b3.

b1 = fitfrd(sysg,1);
b3 = fitfrd(sysg,3);

Compare the original D-scale data sysg with the frequency responses of
the first and third-order models calculated by fitfrd:

b1g = frd(b1,omeg);
b3g = frd(b3,omeg);
bode(sysg,'r-',b1g,'k:',b3g,'b-.')
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Limitations Numerical conditioning problems arise if the state order of the fit N is
selected to be higher than required by the dynamics of A.

See Also fitmagfrd

3-81



fitmagfrd

Purpose Fit frequency response magnitude data with minimum-phase
state-space model using log-Chebychev magnitude design

Syntax B = fitmagfrd(A,N)
B = fitmagfrd(A,N,RD)
B = fitmagfrd(A,N,RD,WT)
B = fitmagfrd(A,N,RD,WT,C)

Description B = fitmagfrd(A,N) is a stable, minimum-phase ss object, with
state-dimension N, whose frequency response magnitude closely
matches the magnitude data in A. A is a 1-by-1 frd object, and N is a
nonnegative integer.

B = fitmagfrd(A,N,RD) forces the relative degree of B to be RD. RD
must be a nonnegative integer whose default value is 0. You can specify
the default value for RD by setting RD to an empty matrix.

B = fitmagfrd(A,N,RD,WT) uses the magnitude of WT to weight the
optimization fit criteria. WT can be a double, ss or frd. If WT is a scalar,
then it is used to weight all entries of the error criteria (A-B). If WT is a
vector, it must be the same size as A, and each individual entry of WT acts
as a weighting function on the corresponding entry of (A-B). The default
value for WT is 1, and you can specify it by setting WT to an empty matrix.

B = fitmagfrd(A,N,RD,WT,C) enforces additional magnitude
constraints on B, specified by the values of C.LowerBound and
C.UpperBound. These can be empty, double or frd (with C.Frequency
equal to A.Frequency). If C.LowerBound is non-empty, then the
magnitude of B is constrained to lie above C.LowerBound. No lower
bound is enforced at frequencies where C.LowerBound is equal to -inf.
Similarly, the UpperBound field can be used to specify an upper bound
on the magnitude of B. If C is a double or frd (with C.Frequency equal
to A.Frequency), then the upper and lower bound constraints on B are
taken directly from A as:

• if C(w) == –1, then enforce abs(B(w)) <= abs(A(w))

• if C(w) == 1, then enforce abs(B(w)) >= abs(A(w))

• if C(w) == 0, then no additional constraint
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where w denotes the frequency.

Examples Fit frequency response magnitude data with a stable, minimum-phase
statespace model:

1 Create frequency response magnitude data from a fifth-order system.

sys = tf([1 2 2],[1 2.5 1.5])*tf(1,[1 0.1]);
sys = sys*tf([1 3.75 3.5],[1 2.5 13]);
omega = logspace(-1,1);
sysg = abs(frd(sys,omega));
bodemag(sysg,'r');

3-83



fitmagfrd

2 Fit the magnitude data with a minimum-phase, stable third-order
system:

ord = 3;
b1 = fitmagfrd(sysg,ord);
b1g = frd(b1,omega);
bodemag(sysg,'r',b1g,'k:');
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3 Fit the magnitude data with a third-order system constrained to lie
below and above the given data.

C2.UpperBound = sysg;
C2.LowerBound = [];
b2 = fitmagfrd(sysg,ord,[],[],C2);
b2g = frd(b2,omega);
C3.UpperBound = [];
C3.LowerBound =sysg;
b3 = fitmagfrd(sysg,ord,[],[],C3);
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b3g = frd(b3,omega);
bodemag(sysg,'r',b1g,'k:',b2g,'b-.',b3g,'m--')

4 Fit the magnitude data with a second-order system constrained to lie
below and above the given data.

ord = 2;
C2.UpperBound = sysg;
C2.LowerBound = [];
b2 = fitmagfrd(sysg,ord,[],sysg,C2);
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b2g = frd(b2,omega);
C3.UpperBound = [];
C3.LowerBound = sysg;
b3 = fitmagfrd(sysg,ord,[],sysg,C3);
b3g = frd(b3,omega);
bgp = fitfrd(genphase(sysg),ord);
bgpg = frd(bgp,omega);
bodemag(sysg,'r',b1g,'k:',b2g,'b-.',b3g,'m--',bgpg,'r--')
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Algorithms fitmagfrd uses a version of log-Chebychev magnitude design, solving

min f subject to (at every frequency point in A):
|d|^2 /(1+ f/WT) < |n|^2/A^2 < |d|^2*(1 + f/WT)

plus additional constraints imposed with C. n, d denote the numerator
and denominator, respectively, and B = n/d. n and d have orders (N-RD)
and N, respectively. The problem is solved using linear programming
for fixed f and bisection to minimize f. An alternate approximate
method, which cannot enforce the constraints defined by C, is B =
fitfrd(genphase(A),N,RD,WT).

Limitations This input frd object must be either a scalar 1-by-1 object or, a row, or
column vector.

References Oppenheim, A.V., and R.W. Schaffer, Digital Signal Processing,
Prentice Hall, New Jersey, 1975, p. 513.

Boyd, S. and Vandenberghe, L., Convex Optimization, Cambridge
University Press, 2004.

See Also fitfrd
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Purpose Compute upper bounds on Vinnicombe gap and nugap distances
between two systems

Syntax [gap,nugap] = gapmetric(p0,p1)
[gap,nugap] = gapmetric(p0,p1,tol)

Description [gap,nugap] = gapmetric(p0,p1) calculates upper bounds on the
gap and nugap (Vinnicombe) metric between systems p0 and p1. The
gap and nugap values lie between 0 and 1. A small value (relative to
1) implies that any controller that stabilizes p0 will likely stabilize p1,
and, moreover, that the closed-loop gains of the two closed-loop systems
will be similar. A gap or nugap of 0 implies that p0 equals p1, and a
value of 1 implies that the plants are far apart. The input and output
dimensions of p0 and p1 must be the same.

[gap,nugap] = gapmetric(p0,p1,tol) specifies a relative accuracy
for calculating the gap metric and nugap metric. The default value for
tol is 0.001. The computed answers are guaranteed to satisfy

gap-tol < gapexact(p0,p1) <= gap

Examples Consider two plant models. One plant is an unstable, first-order, with
transfer function 1/(s-0.001) and the other plant is stable first-order
with transfer function 1/(s+0.001).

p1 = tf(1,[1 -0.001]);
p2 = tf(1,[1 0.001]);

Despite the fact that one plant is unstable and the other is stable,
these plants are close in the gap and nugap metrics. Intuitively, this
is obvious, because, for instance, the feedback controller K=1 stabilizes
both plants and renders the closed-loop systems nearly identical.

[g,ng] = gapmetric(p1,p2)
g =

0.0029
ng =

0.0020

3-89



gapmetric

K = 1;
H1 = loopsens(p1,K);
H2 = loopsens(p2,K);
subplot(2,2,1); bode(H1.Si,'-',H2.Si,'--');
subplot(2,2,2); bode(H1.Ti,'-',H2.Ti,'--');
subplot(2,2,3); bode(H1.PSi,'-',H2.PSi,'--');
subplot(2,2,4); bode(H1.CSo,'-',H2.CSo,'--');

Next, consider two stable plant models that differ by a first-order
system. One plant is the transfer function 50/(s+50) and the other plant
is the transfer function 50/(s+50) * 8/(s+8).

p3 = tf([50],[1 50]);
p4 = tf([8],[1 8])*p3;

Although the two systems have similar high-frequency dynamics and
the same unity gain at low frequency, the plants are modestly far apart
in the gap and nugap metrics.
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[g,ng] = gapmetric(p3,p4)
g =

0.6156
ng =

0.6147

Algorithms gap and nugap compute the gap and ν gap metrics between two LTI
objects. Both quantities give a numerical value δ(p0,p1) between 0 and
1 for the distance between a nominal system p0 (G0) and a perturbed
system p1 (G1). The gap metric was introduced into the control
literature by Zames and El-Sakkary 1980, and exploited by Georgiou
and Smith 1990. The ν gap metric was derived by Vinnicombe 1993.
For both of these metrics the following robust performance result holds
from Qui and Davidson 1992, and Vinnicombe 1993

arcsin b(G1,K1) ≥ arcsin b(G0,K0) – arcsin δ(G0,G1) – arcsin δ(K0,K1)

where

b G K
I
K

I GK G I( , ) ( )=
⎡

⎣
⎢

⎤

⎦
⎥ − [ ]−

∞

−
1

1

The interpretation of this result is that if a nominal plantG0 is stabilized
by controller K0, with “stability margin” b(G0,K0), then the stability
margin when G0 is perturbed to G1 and K0 is perturbed to K1 is degraded
by no more than the above formula. Note that 1/b(G,K) is also the signal
gain from disturbances on the plant input and output to the input and
output of the controller. The ν gap is always less than or equal to the
gap, so its predictions using the above robustness result are tighter.

To make use of the gap metrics in robust design, weighting functions
need to be introduced. In the above robustness result, G needs to be

replaced by W2GW1 and K by W KW1
1

2
1− − (similarly for G0, G1, K0 and

K1). This makes the weighting functions compatible with the weighting
structure in the H∞ loop shaping control design procedure (see loopsyn
and ncfsyn for more details).
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The computation of the gap amounts to solving 2-block H∞ problems
(Georgiou, Smith 1988). The particular method used here for solving
the H∞ problems is based on Green et al., 1990. The computation of the
nugap uses the method of Vinnicombe, 1993.

References Georgiou, T.T., “On the computation of the gap metric, ” Systems
Control Letters, Vol. 11, 1988, p. 253-257

Georgiou, T.T., and M. Smith, “Optimal robustness in the gap metric,”
IEEE Transactions on Automatic Control, Vol. 35, 1990, p. 673-686

Green, M., K. Glover, D. Limebeer, and J.C. Doyle, “A J-spectral
factorization approach to H∞ control,” SIAM J. of Control and Opt.,
28(6), 1990, p. 1350-1371

Qiu, L., and E.J. Davison, “Feedback stability under simultaneous gap
metric uncertainties in plant and controller,” Systems Control Letters,
Vol. 18-1, 1992 p. 9-22

Vinnicombe, G., “Measuring Robustness of Feedback Systems,” PhD
Dissertation, Department of Engineering, University of Cambridge,
1993.

Zames, G., and El-Sakkary, “Unstable systems and feedback: The gap
metric,” Proceedings of the Allerton Conference, October 1980, p. 380-385

See Also loopsyn | ncfsyn | robuststab | wcsens | wcmargin
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Purpose Fit single-input/single-output magnitude data with real, rational,
minimum-phase transfer function

Syntax resp = genphase(d)

Description genphase uses the complex-cepstrum algorithm to generate a complex
frequency response resp whose magnitude is equal to the real, positive
response d, but whose phase corresponds to a stable, minimum-phase
function. The input, d, and output, resp, are frd objects.

References Oppenheim, A.V., and R.W. Schaffer, Digital Signal Processing,
Prentice Hall, New Jersey, 1975, p. 513.

See Also fitfrd | fitmagfrd
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Purpose Internal description of LMI system

Syntax lmisys = getlmis

Description After completing the description of a given LMI system with lmivar
and lmiterm, its internal representation lmisys is obtained with the
command

lmisys = getlmis

This MATLAB representation of the LMI system can be forwarded to the
LMI solvers or any other LMI-Lab function for subsequent processing.

See Also setlmis | lmivar | lmiterm | newlmi
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Purpose Generalized eigenvalue minimization under LMI constraints

Syntax [lopt,xopt] = gevp(lmisys,nlfc,options,linit,xinit,target)

Description gevp solves the generalized eigenvalue minimization problem of
minimizing λ, subject to:

C x D x( ) ( )< (3-7)

0 < B x( ) (3-8)

A x B x( ) ( )< λ (3-9)

where C(x) < D(x) and A(x) < λB(x) denote systems of LMIs. Provided
that Equation 3-7 and Equation 3-8 are jointly feasible, gevp returns
the global minimum lopt and the minimizing value xopt of the vector
of decision variables x. The corresponding optimal values of the matrix
variables are obtained with dec2mat.

The argument lmisys describes the system of LMIs Equation 3-7
to Equation 3-9 for λ = 1. The LMIs involving λ are called the
linear-fractional constraints while Equation 3-7 and Equation 3-8 are
regular LMI constraints. The number of linear-fractional constraints
Equation 3-9 is specified by nlfc. All other input arguments are
optional. If an initial feasible pair (λ0, x0) is available, it can be passed
to gevp by setting linit to λ0 and xinit to x0. Note that xinit should
be of length decnbr(lmisys) (the number of decision variables). The
initial point is ignored when infeasible. Finally, the last argument
target sets some target value for λ. The code terminates as soon as it
has found a feasible pair (λ, x) with λ ≤ target.

Caution When setting up your gevp problem, be cautious to

• Always specify the linear-fractional constraints Equation 3-9 last in
the LMI system. gevp systematically assumes that the last nlfc LMI
constraints are linear fractional.
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• Add the constraint B(x) > 0 or any other LMI constraint that enforces
it (see Remark below). This positivity constraint is required for
regularity and good formulation of the optimization problem.

Control
Parameters

The optional argument options lets you access control parameters of
the optimization code. In gevp, this is a five-entry vector organized
as follows:

• options(1) sets the desired relative accuracy on the optimal value
lopt (default = 10–2).

• options(2) sets the maximum number of iterations allowed to be
performed by the optimization procedure (100 by default).

• options(3) sets the feasibility radius. Its purpose and usage are the
same as for feasp.

• options(4) helps speed up termination. If set to an integer value
J > 0, the code terminates when the progress in λ over the last J
iterations falls below the desired relative accuracy. Progress means
the amount by which λ decreases. The default value is 5 iterations.

• options(5) = 1 turns off the trace of execution of the optimization
procedure. Resetting options(5) to zero (default value) turns it
back on.

Setting option(i) to zero is equivalent to setting the corresponding
control parameter to its default value.

Examples Given

A A A1
1 2

1 3
2

0 8 1 5
1 3 2 7

3
1 4 0 9
0 7 2
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⎝
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⎞
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⎟ =

−
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,
. .

. .
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. .
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⎛

⎝
⎜

⎞

⎠
⎟ ,

consider the problem of finding a single Lyapunov function V(x) = xTPx
that proves stability of

x A x ii= = ( , , )1 2 3
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and maximizes the decay rate
dV x

dt
( )

. This is equivalent to minimizing

α subject to

I P< (3-10)

A P PA PT
1 1+ < α (3-11)

A P PA PT
2 2+ < α (3-12)

A P PA PT
3 3+ < α (3-13)

To set up this problem for gevp, first specify the LMIs Equation 3-11 to
Equation 3-13with α = 1:

setlmis([]);
p = lmivar(1,[2 1])

lmiterm([1 1 1 0],1) % P > I : I
lmiterm([ 1 1 1 p],1,1) % P > I : P
lmiterm([2 1 1 p],1,a1,'s') % LFC # 1 (lhs)
lmiterm([ 2 1 1 p],1,1) % LFC # 1 (rhs)
lmiterm([3 1 1 p],1,a2,'s') % LFC # 2 (lhs)
lmiterm([ 3 1 1 p],1,1) % LFC # 2 (rhs)
lmiterm([4 1 1 p],1,a3,'s') % LFC # 3 (lhs)
lmiterm([ 4 1 1 p],1,1) % LFC # 3 (rhs)
lmis = getlmis

Note that the linear fractional constraints are defined last as required.
To minimize α subject to Equation 3-11 to Equation 3-13, call gevp by

[alpha,popt]=gevp(lmis,3)

This returns alpha = -0.122 as the optimal value (the largest decay
rate is therefore 0.122). This value is achieved for:
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P =
−

−
⎛

⎝
⎜

⎞

⎠
⎟

5 58 8 35
8 35 18 64
. .
. .

Tips Generalized eigenvalue minimization problems involve standard LMI
constraints Equation 3-7 and linear fractional constraints Equation 3-9.
For well-posedness, the positive definiteness of B(x) must be enforced
by adding the constraint B(x) > 0 to the problem. Although this could
be done automatically from inside the code, this is not desirable for
efficiency reasons. For instance, the set of constraints Equation 3-8
may reduce to a single constraint as in the example above. In this
case, the single extra LMI “P > I ” is enough to enforce positivity of all
linear-fractional right sides. It is therefore left to the user to devise the
least costly way of enforcing this positivity requirement.

References The solver gevp is based on Nesterov and Nemirovski’s Projective
Method described in

Nesterov, Y., and A. Nemirovski, Interior Point Polynomial Methods in
Convex Programming: Theory and Applications, SIAM, Philadelphia,
1994.

The optimization is performed by the C MEX-file fpds.mex.

See Also dec2mat | decnbr | feasp | mincx
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Purpose Grid ureal parameters uniformly over their range

Syntax B = gridreal(A,N)
[B,SampleValues] = gridreal(A,N)
[B,SampleValues] = gridreal(A,Names,N)
[B,SampleValues] = gridreal(A,Names1,N1,Names2,N2,...)

Description B = gridureal(A,N) substitutes N uniformly-spaced samples of
the uncertain real parameters in A. The samples are chosen to cut
“diagonally” across the cube of real parameter uncertainty space. The
array B has size equal to [size(A) N]. For example, suppose A has 3
uncertain real parameters, say X, Y and Z. Let (x1, x2 , , and xN)
denote N uniform samples of X across its range. Similar for Y and Z.
Then sample A at the points (x1, y1, z1), (x2, y2, z2), and (xN,
yN, zN) to obtain the result B.

If A depends on additional uncertain objects, then B will be an uncertain
object.

[B,SampleValues] = gridureal(A,N) additionally returns the specific
sampled values (as a structure whose fieldnames are the names of A's
uncertain elements) of the uncertain reals. Hence, B is the same as
usubs(A,SampleValues).

[B,SampleValues] = gridureal(A,NAMES,N) samples only the
uncertain reals listed in the NAMES variable (cell, or char array). Any
entries of NAMES that are not elements of A are simply ignored. Note
that gridureal(A, fieldnames(A.Uncertainty),N) is the same
as gridureal(A,N).

[B,SampleValues] = gridureal(A,NAMES1,N1,NAMES2,N2,...)
takes N1 samples of the uncertain real parameters listed in NAMES1, and
N2 samples of the uncertain real parameters listed in NAMES2 and so on.
size(B) will equal [size(A) N1 N2 ...].

Examples Create two uncertain real parameters gamma and tau. The nominal
value of gamma is 4 and its range is 3 to 5. The nominal value of tau is
0.5 and its value can change by +/- 30 percent.
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gamma = ureal('gamma',4);
tau = ureal('tau',.5,'Percentage',30);

These uncertain parameters are used to construct an uncertain transfer
function p. An integral controller, c, is synthesized for the plant p based
on the nominal values of gamma and tau. The uncertain closed-loop
system clp is formed.

p = tf(gamma,[tau 1]);
KI = 1/(2*tau.Nominal*gamma.Nominal);
c = tf(KI,[1 0]);
clp = feedback(p*c,1);

The figure below shows the open-loop unit step response (top plot) and
closed-loop response (bottom plot) for a grid of 20 values of gamma and
tau.

subplot(2,1,1); step(gridureal(p,20),6)
title('Open-loop plant step responses')
subplot(2,1,2); step(gridureal(clp,20),6)
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It clearly illustrates the low-frequency closed-loop insensitivity achieved
by the PI control system.

Multi-Parameter Example

The next example illustrates the different options in gridding
high-dimensional (e.g., n greater than 2) parameter spaces. An
uncertain matrix, m, is constructed from four uncertain real parameters,
a, b, c and d, each making up the individual entries.

a=ureal('a',1); b=ureal('b',2); c=ureal('c',3); d=ureal('d',4);
m = [a b;c d];

In the first case, the (a,b) space is gridded at five places, and the (c,d)
space at three places. The uncertain matrix m is evaluated at these 15
grid-points resulting in the matrix m1.
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m1 = gridureal(m,{'a';'b'},5,{'c';'d'},3);

In the second case, the (a,b,c,d) space is gridded at 15 places, and
the uncertain matrix m is sampled at these 15 points. The resulting
matrix is m2.

m2 = gridureal(m,{'a';'b';'c';'d'},15);

The (2,1) entry of m is just the uncertain real parameter c. Below, you
see the histogram plots of the (2,1) entry of both m1 and m2. The (2,1)
entry of m1 only takes on three distinct values, while the (2,1) entry of m2
(which is also c) takes on 15 distinct values uniformly through its range.

subplot(2,1,1)
hist(m1(2,1,:))
title('2,1 entry of m1')
subplot(2,1,2)
hist(m2(2,1,:))
title('2,1 entry of m2')
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See Also usample | usubs
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Purpose Mixed H2/H∞ synthesis with pole placement constraints

Syntax [gopt,h2opt,K,R,S] = hinfmix(P,r,obj,region,dkbnd,tol)

Description h2hinfyn performs multi-objective output-feedback synthesis. The
control problem is sketched in this figure.

If T∞(s) and T2(s) denote the closed-loop transfer functions from w to z∞
and z2, respectively, hinfmix computes a suboptimal solution of the
following synthesis problem:

Design an LTI controller K(s) that minimizes the mixed H2/H∞ criterion

α βT T∞ ∞ +2
2 2

2

subject to

• T∞ [[BULLET]] < γ0

• T2 2 < ν0

• The closed-loop poles lie in some prescribed LMI region D.

Recall that . ∞ and . 2 denote the H∞ norm (RMS gain) and H2 norm
of transfer functions.

P is any SS, TF, or ZPK LTI representation of the plant P(s), and r is
a three-entry vector listing the lengths of z2, y, and u. Note that z∞
and/or z2 can be empty. The four-entry vector obj = [γ0, ν0, α, β] specifies
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the H2/H∞ constraints and trade-off criterion, and the remaining input
arguments are optional:

• region specifies the LMI region for pole placement (the default
region = [] is the open left-half plane). Use lmireg to interactively
build the LMI region description region

• dkbnd is a user-specified bound on the norm of the controller
feedthrough matrix DK. The default value is 100. To make the
controller K(s) strictly proper, set dkbnd = 0.

• tol is the required relative accuracy on the optimal value of the
trade-off criterion (the default is 10–2).

The function h2hinfsyn returns guaranteed H∞ and H2 performances
gopt and h2opt as well as the SYSTEM matrix K of the LMI-optimal
controller. You can also access the optimal values of the LMI variables
R, S via the extra output arguments R and S.

A variety of mixed and unmixed problems can be solved with hinfmix.
In particular, you can use hinfmix to perform pure pole placement
by setting obj = [0 0 0 0]. Note that both z∞ and z2 can be empty
in such case.

References Chilali, M., and P. Gahinet, “H∞ Design with Pole Placement
Constraints: An LMI Approach,” to appear in IEEE Trans. Aut. Contr.,
1995.

Scherer, C., “Mixed H2 H-infinity Control,” to appear in Trends in
Control: A European Perspective, volume of the special contributions to
the ECC 1995.

See Also lmireg | msfsyn
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Purpose H2 control synthesis for LTI plant

Syntax [K,CL,GAM,INFO]=H2SYN(P,NMEAS,NCON)

Description h2syn computes a stabilizing H2 optimal lti/ss controller K for a
partitioned LTI plant P. The controller, K, stabilizes the plant P and
has the same number

P
A B B

C D D
C D D

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1 2

1 11 12

2 21 22

of states as P. The LTI system P is partitioned where inputs to B1 are the
disturbances, inputs to B2 are the control inputs, output of C1 are the
errors to be kept small, and outputs of C2 are the output measurements
provided to the controller. B2 has column size (NCON) and C2 has row
size (NMEAS).

If P is constructed with mktito, you can omit NMEAS and NCON from
the arguments.

The closed-loop system is returned in CL and the achieved H2 cost γ in
GAM. INFO is a struct array that returns additional information about
the design.
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H2 control system CL= lft(P,K)= Ty u1 1
.

Output
Arguments

Description

K LTI controller

CL=
lft(P,K) LTI closed-loop system Ty u1 1

GAM =
norm(CL)

H2 optimal cost γ =
Ty u1 1

2

INFO Additional output information

Additional output — structure array INFO containing possible additional
information depending on METHOD)
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INFO.NORMS Norms of four different quantities, full information
control cost (FI), output estimation cost (OEF), direct
feedback cost (DFL) and full control cost (FC). NORMS
= [FI OEF DFL FC];

INFO.KFI Full-information gain matrix (constant feedback)

u t K x tFI2( ) ( )=

INFO.GFI Full-information closed-loop system
GFI=ss(A-B2*KFI,B1,C1-D12*KFI,D11)

INFO.HAMX X Hamiltonian matrix (state-feedback)

INFO.HAMY Y Hamiltonian matrix (Kalman filter)

Examples Example 1: Stabilize 4-by-5 unstable plant with three states, NMEAS=2,
NCON=2.

rand('seed',0);randn('seed',0);
P=rss(3,4,5)';
[K,CL,GAM]=h2syn(P,2,1);
open_loop_poles=pole(P)
closed_loop_poles=pole(CL)

Example 2: Mixed-Sensitivity H2 loop-shaping. Here the goal is to
shape the sigma plots of sensitivity S: = (I + GK)–1 and complementary
sensitivity T: = GK (I+GK)–1, by choosing a stabilizing K the minimizes
the H2 norm of

T
W S

W G T
W T

y u1 1

1

2

3

( / )
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

where G s
s
s

W
s

s
W W( ) ,

. ( )
, . .= −

−
= +

+
=1

2
0 1 1000

100 1
0 11 2 3  , no 

s=zpk('s');
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G=10*(s-1)/(s+1)^2;
W1=0.1*(s+1000)/(100*s+1); W2=0.1; W3=[];
P=ss(G,W1,W2,W3);
[K,CL,GAM]=h2syn(P);
L=G*K; S=inv(1+L); T=1-S;
sigma(L,'k-.',S,'r',T,'g')

Algorithms The H2 optimal control theory has its roots in the frequency domain
interpretation the cost function associated with time-domain state-space
LQG control theory [1]. The equations and corresponding nomenclature
used here are taken from the Doyle et al., 1989 [2]-[3].

h2syn solves the H2 optimal control problem by observing that it
is equivalent to a conventional Linear-Quadratic Gaussian (LQG)
optimal control problem. For simplicity, we shall describe the details
of algorithm only for the continuous-time case, in which case the cost
function JLQG satisfies

J E
T

y y dt
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x u
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with plant noise u1 channel of intensity I, passing through the matrix
[B1;0;D12] to produce equivalent white correlated with plant ξ and
white measurement noise θ having joint correlation function

E
t
t

N

N
tT f

f
T

ξ
θ

ξ τ θ τ δ τ
( )
( )

( ) ( ) ( )
⎡

⎣
⎢

⎤

⎦
⎥[ ]⎧

⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−
Ξ

Θ

==
⎡

⎣
⎢

⎤

⎦
⎥ ⎡⎣ ⎤⎦ −

B
D

B D tT T1

21
1 21 δ τ( )

3-109



h2syn

The H2 optimal controller K(s) is thus realizable in the usual LQG
manner as a full-state feedback KFI and a Kalman filter with residual
gain matrix KFC.

1 Kalman Filter

ˆ ˆ ( )

( ) (

ˆ
x Ax B u K y C D u

K YC N YC B D

FC x

FC
T

f
T

= + + − −

= + = +−
2 2 2 2 22 2

2
1

2 1 2Θ 11 21 21
1T TD D)( )−

where Y = YT≥0 solves the Kalman filter Riccati equation

YA AY YC N C Y NT T
f f

T+ − + + + =−( ) ( )2
1

2 0Θ Ξ

2 Full-State Feedback

u K x

K R B X N D D B X D C

FI

FI
T

c
T T T T

2
1

2 12 12
1

2 12 1

=

= + = +− −

ˆ

( ) ) ( )

where X = XT≥0 solves the state-feedback Riccati equation

A X XA XB N R B X N QT
c

T
c
T+ − + + + =−( ) ( )2

1
2 0

The final positive-feedback H2 optimal controller u K s y2 2= ( ) has a
familiar closed-form

K s
A K C B K K D K K

K
FC FI FC FI f

FI
( ) :=

− − +

−
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2 2 22

0

h2syn implements the continuous optimal H2 control design
computations using the formulae described in the Doyle, et al. [2];
for discrete-time plants, h2syn uses the same controller formula,
except that the corresponding discrete time Riccati solutions (dare)
are substituted for X and Y. A Hamiltonian is formed and solved
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via a Riccati equation. In the continuous-time case, the optimal
H2-norm is infinite when the plant D11 matrix associated with the
input disturbances and output errors is non-zero; in this case, the
optimal H2 controller returned by h2syn is computed by first setting
D11 to zero.

3 Optimal Cost GAM

The full information (FI) cost is given by the equation

trace ( )′( )B X B1 2 1

1
2

. The output estimation cost (OEF) is given by

trace ( )F Y F2 2 2

1
2

′( ) , where F B X D C2 2 2 12 1= − ′ + ′: ( ) . The disturbance

feedforward cost (DFL) is trace ( )′( )L X L2 2 2

1
2

, where L2 is defined

by − ′ + ′( )Y C B D2 2 1 21 and the full control cost (FC) is given by

trace ( )C Y C1 2 1

1
2

′( ) . X2 and Y2 are the solutions to the X and Y Riccati
equations, respectively. For for continuous-time plants with zero
feedthrough term (D11 = 0), and for all discrete-time plants, the

optimal H2 cost γ =
Ty u1 1 2 is

GAM =sqrt(FI^2 + OEF^2+ trace(D11*D11'));

otherwise, GAM = Inf.

Limitations • (A, B2, C2) must be stabilizable and detectable.

• D12 must have full column rank and D21 must have full row rank

References [1] Safonov, M.G., A.J. Laub, and G. Hartmann, “Feedback Properties
of Multivariable Systems: The Role and Use of Return Difference
Matrix,” IEEE Trans. of Automat. Contr., AC-26, pp. 47-65, 1981.

3-111



h2syn

[2] Doyle, J.C., K. Glover, P. Khargonekar, and B. Francis, “State-space
solutions to standard H2 and H∞ control problems,” IEEE Transactions
on Automatic Control, vol. 34, no. 8, pp. 831–847, August 1989.

[3] Glover, K., and J.C. Doyle, “State-space formulae for all stabilizing
controllers that satisfy an H∞ norm bound and relations to risk
sensitivity,” Systems and Control Letters, 1988. vol. 11, pp. 167–172,
August 1989.

See Also augw | hinfsyn
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Purpose Hankel minimum degree approximation (MDA) without balancing

Syntax GRED = hankelmr(G)
GRED = hankelmr(G,order)
[GRED,redinfo] = hankelmr(G,key1,value1,...)
[GRED,redinfo] = hankelmr(G,order,key1,value1,...)

Description hankelmr returns a reduced order model GRED of G and a struct array
redinfo containing the error bound of the reduced model and Hankel
singular values of the original system.

The error bound is computed based on Hankel singular values of G. For
a stable system Hankel singular values indicate the respective state
energy of the system. Hence, reduced order can be directly determined
by examining the system Hankel SV’s, σι.

With only one input argument G, the function will show a Hankel
singular value plot of the original model and prompt for model order
number to reduce.

This method guarantees an error bound on the infinity norm of the
additive error G-GRED ∞ for well-conditioned model reduced problems
[1]:

G Gred i
k

n
− ≤∞

+
∑2

1
σ

Note It seems this method is similar to the additive model reduction
routines balancmr and schurmr, but actually it can produce more
reliable reduced order model when the desired reduced model has
nearly controllable and/or observable states (has Hankel singular
values close to machine accuracy). hankelmr will then select an optimal
reduced system to satisfy the error bound criterion regardless the order
one might naively select at the beginning.
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This table describes input arguments for hankelmr.

Argument Description

G LTI model to be reduced (without any other inputs will
plot its Hankel singular values and prompt for reduced
order)

ORDER (Optional) an integer for the desired order of the
reduced model, or optionally a vector packed with
desired orders for batch runs

A batch run of a serial of different reduced order models can be
generated by specifying order = x:y, or a vector of integers. By
default, all the anti-stable part of a system is kept, because from control
stability point of view, getting rid of unstable state(s) is dangerous to
model a system.

'MaxError' can be specified in the same fashion as an alternative for
'ORDER’. In this case, reduced order will be determined when the sum of
the tails of the Hankel sv’s reaches the ’MaxError’.

Argument Value Description

'MaxError' Real number or vector of
different errors

Reduce to achieve H∞
error.

When present,
'MaxError'overides
ORDER input.

'Weights' {Wout,Win} cell array Optimal 1x2 cell array
of LTI weights Wout
(output) and Win (input).
Default for both is
identity. Weights must be
invertible.
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Argument Value Description

'Display' 'on' or 'off' Display Hankel singular
plots (default 'off').

'Order' Integer, vector or cell
array

Order of reduced model.
Use only if not specified as
2nd argument.

Weights on the original model input and/or output can make the model
reduction algorithm focus on some frequency range of interests. But
weights have to be stable, minimum phase and invertible.

This table describes output arguments.

Argument Description

GRED LTI reduced order model. Become multi-dimensional
array when input is a serial of different model order
array.

REDINFO A STRUCT array with 4 fields:

• REDINFO.ErrorBound (bound on G-GRED ∞)

• REDINFO.StabSV (Hankel SV of stable part of G)

• REDINFO.UnstabSV (Hankel SV of unstable part of
G)

• REDINFO.Ganticausal (Anti-causal part of Hankel
MDA)

G can be stable or unstable, continuous or discrete.

Note If size(GRED) is not equal to the order you specified. The
optimal Hankel MDA algorithm has selected the best Minimum Degree
Approximate it can find within the allowable machine accuracy.
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Algorithms Given a state-space (A,B,C,D) of a system and k, the desired reduced
order, the following steps will produce a similarity transformation to
truncate the original state-space system to the kth order reduced model.

1 Find the controllability and observability grammians P and Q.

2 Form the descriptor

E QP I= − ρ2

where σ ρ σk k> ≥ +1 , and descriptor state-space

Take SVD of descriptor E and partition the result into kth order
truncation form
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4 Form the equivalent state-space model.
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The final kth order Hankel MDA is the stable part of the
above state-space realization. Its anticausal part is stored in
redinfo.Ganticausal.

The proof of the Hankel MDA algorithm can be found in [2]. The error
system between the original system G and the Zeroth Order Hankel
MDA G0 is an all-pass function [1].

Examples Given a continuous or discrete, stable or unstable system, G, the
following commands can get a set of reduced order models based on
your selections:

rand('state',1234); randn('state',5678);G = rss(30,5,4);
[g1, redinfo1] = hankelmr(G); % display Hankel SV plot

% and prompt for order (try 15:20)
[g2, redinfo2] = hankelmr(G,20);
[g3, redinfo3] = hankelmr(G,[10:2:18]);
[g4, redinfo4] = hankelmr(G,'MaxError',[0.01, 0.05]);
rand('state',12345); randn('state',6789);
wt1 = rss(6,5,5); wt1.d = eye(5)*2;
wt2 = rss(6,4,4); wt2.d = 2*eye(4);
[g5, redinfo5] = hankelmr(G, [10:2:18], 'weight',{wt1,wt2});
for i = 1:5
figure(i); eval(['sigma(G,g' num2str(i) ');']);

end

Singular Value Bode Plot of G (30-state, 5 outputs, 4 inputs) on page
3-118 shows a singular value Bode plot of a random system G with 20
states, 5 output and 4 inputs. The error system between G and its
Zeroth order Hankel MDA has it infinity norm equals to an all pass
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function, as shown in All-Pass Error System Between G and Zeroth
Order G Anticausal on page 3-119.

The Zeroth order Hankel MDA and its error system sigma plot are
obtained via commands

[g0,redinfo0] = hankelmr(G,0);
sigma(G-redinfo0.Ganticausal)

This interesting all-pass property is unique in Hankel MDA model
reduction.

Singular Value Bode Plot of G (30-state, 5 outputs, 4 inputs)
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All-Pass Error System Between G and Zeroth Order G Anticausal

References [1] Glover, K., “All Optimal Hankel Norm Approximation of Linear
Multivariable Systems, and Their L∝-error Bounds,” Int. J. Control,
vol. 39, no. 6, pp. 1145-1193, 1984.

[2] Safonov, M.G., R.Y. Chiang, and D.J.N. Limebeer, “Optimal Hankel
Model Reduction for Nonminimal Systems,” IEEE Trans. on Automat.
Contr., vol. 35, no. 4, April 1990, pp. 496-502.

See Also reduce | balancmr | schurmr | bstmr | ncfmr | hankelsv
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Purpose Compute Hankel singular values for stable/unstable or
continuous/discrete system

Syntax hankelsv(G)
hankelsv(G,ErrorType,style)
[sv_stab,sv_unstab]=hankelsv(G,ErrorType,style)

Description [sv_stab,sv_unstab]=hankelsv(G,ErrorType,style) returns a
column vector SV_STAB containing the Hankel singular values of the
stable part of G and SV_UNSTAB of anti-stable part (if it exists). The
Hankel SV’s of anti-stable part ss(a,b,c,d) is computed internally via
ss(-a,-b,c,d). Discrete model is converted to continuous one via the
bilinear transform.

hankelsv(G) with no output arguments draws a bar graph of the
Hankel singular values such as the following:
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This table describes optional input arguments for hankelsvd.

Argument Value Description

ERRORTYPE 'add'

'mult'

'ncf'

Regular Hankel SV’s of G

Hankel SV’s of phase matrix

Hankel SV’s of coprime factors

STYLE 'abs'

'log'

Absolute value

logarithm scale

Algorithms For ErrorType = 'add', hankelsv implements the numerically
robust square root method to compute the Hankel singular values [1].
Its algorithm goes as follows:
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Given a stable model G, with controllability and observability
grammians P and Q, compute the SVD of P and Q:

[Up,Sp,Vp] = svd(P);
[Uq,Sq,Vq] = svd(Q);

Then form the square roots of the grammians:

Lr = Up*diag(sqrt(diag(Sp)));
Lo = Uq*diag(sqrt(diag(Sq)));

The Hankel singular values are simply:

σH =svd(Lo'*Lr);

This method not only takes the advantages of robust SVD algorithm,
but also ensure the computations stay well within the “square root”
of the machine accuracy.

For ErrorType = 'mult', hankelsv computes the Hankel singular
value of the phase matrix of G [2].

For ErrorType = 'ncf’, hankelsv computes the Hankel singular value
of the normalized coprime factor pair of the model [3].

References [1] Safonov, M.G., and R.Y. Chiang, “A Schur Method for Balanced
Model Reduction,” IEEE Trans. on Automat. Contr., vol. AC-2, no.
7, July 1989, pp. 729-733.

[2] Safonov, M.G., and R.Y. Chiang, “Model Reduction for Robust
Control: A Schur Relative Error Method,” International J. of Adaptive
Control and Signal Processing, Vol. 2, pp. 259-272, 1988.

[3] Vidyasagar, M., Control System Synthesis - A Factorization
Approach. London: The MIT Press, 1985.

See Also reduce | balancmr | schurmr | bstmr | ncfmr | hankelmr
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Purpose Synthesis of gain-scheduled H∞ controllers

Syntax [gopt,pdK,R,S] = hinfgs(pdP,r,gmin,tol,tolred)

Description Given an affine parameter-dependent plant

P
x A p x B p w B u
z C p x D p w D u
y C x D w D u

 = + +
= + +
= + +

⎧
⎨

( ) ( )
( ) ( )

1 2
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2 21 22

⎪⎪

⎩
⎪

where the time-varying parameter vector p(t) ranges in a box and is
measured in real time, hinfgs seeks an affine parameter-dependent
controller

K
A p B p y

u C p D P y
K K

K K

ζ ζ
ζ

= +
= +

⎧
⎨
⎪

⎩⎪
( ) ( )
( ) ( )

scheduled by the measurements of p(t) and such that

• K stabilizes the closed-loop system

for all admissible parameter trajectories p(t)

• K minimizes the closed-loop quadratic H∞ performance from w to z.

The description pdP of the parameter-dependent plant P is specified
with psys and the vector r gives the number of controller inputs and
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outputs (set r=[p2,m2] if y Rp2 and u Rm2). Note that hinfgs also
accepts the polytopic model of P returned, e.g., by aff2pol.

hinfgs returns the optimal closed-loop quadratic performance gopt and
a polytopic description of the gain-scheduled controller pdK. To test if a
closed-loop quadratic performance γ is achievable, set the third input
gmin to γ. The arguments tol and tolred control the required relative
accuracy on gopt and the threshold for order reduction. Finally, hinfgs
also returns solutions R, S of the characteristic LMI system.

Controller
Implementation

The gain-scheduled controller pdK is parametrized by p(t) and

characterized by the values KΠj of
A p B p
C p D p

K K

K K

( ) ( )
( ) ( )

⎛

⎝
⎜

⎞

⎠
⎟ at the corners ³j of

the parameter box. The command

Kj = psinfo(pdK,'sys',j)

returns the j-th vertex controller KΠj while

pv = psinfo(pdP,'par')
vertx = polydec(pv)
Pj = vertx(:,j)

gives the corresponding corner ³j of the parameter box (pv is the
parameter vector description).

The controller scheduling should be performed as follows. Given the
measurements p(t) of the parameters at time t,

1 Express p(t) as a convex combination of the ³j:

p t N N j j
i

N
( ) , ,= + + ≥ =

=
∑α α α α1

3
1

3

1
0 1  

This convex decomposition is computed by polydec.
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2 Compute the controller state-space matrices at time t as the convex
combination of the vertex controllers KΠj:

A t B t
C t D t

KK K

K K
j

i

N( ) ( )
( ) ( )

.
⎛

⎝
⎜

⎞

⎠
⎟ =

=
∑α

ι
1

Π

3 Use AK(t), BK(t), CK(t), DK(t) to update the controller state-space
equations.

References Apkarian, P., P. Gahinet, and G. Becker, “Self-Scheduled H∞ Control of
Linear Parameter-Varying Systems,” submitted to Automatica, October
1995.

Becker, G., Packard, P., “Robust Performance of Linear-Parametrically
Varying Systems Using Parametrically-Dependent Linear Feedback,”
Systems and Control Letters, 23 (1994), pp. 205-215.

Packard, A., “Gain Scheduling via Linear Fractional Transformations,”
Syst. Contr. Letters, 22 (1994), pp. 79-92.

See Also psys | pvec | pdsimul | polydec
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Purpose H∞ tuning of fixed-structure controllers

Syntax CL = hinfstruct(CL0)
[CL,gamma,info] = hinfstruct(CL0)
[CL,gamma,info] = hinfstruct(CL0,options)
[C,gamma,info] = hinfstruct(P,C0,options)

Description CL = hinfstruct(CL0) tunes the free parameters of the tunable genss
model CL0. This tuning minimizes the H∞ norm of the closed-loop
transfer function modeled by CL0. The model CL0 represents a
closed-loop control system that includes tunable components such as
controllers or filters. CL0 can also include weighting functions that
capture design requirements.

[CL,gamma,info] = hinfstruct(CL0) returns gamma (the minimum
H∞ norm) and a data structure info with additional information about
each optimization run.

[CL,gamma,info] = hinfstruct(CL0,options) allows you to specify
additional options for the optimizer using hinfstructOptions.

[C,gamma,info] = hinfstruct(P,C0,options) tunes the parametric
controller blocks C0. This tuning minimizes the H∞ norm of the
closed-loop system CL0 = lft(P,C0). To use this syntax, express your
control system and design requirements as a Standard Form model, as
in the following illustration:
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P is a numeric LTI model that includes the fixed elements of the control
architecture. P can also include weighting functions that capture design
requirements. C0 can be a single tunable component (for example, a
Control Design Block or a genss model) or a cell array of multiple
tunable components. C is a parametric model or array of parametric
models of the same types as C0.

Tips • hinfstruct is related to hinfsyn, which also uses H∞ techniques to
design a controller for a MIMO plant. However, unlike hinfstruct,
hinfsyn imposes no restriction on the structure and order of the
controller. For that reason, hinfsyn always returns a smaller gamma
than hinfstruct. You can therefore use hinfsyn to obtain a lower
bound on the best achievable performance.
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Input
Arguments

CL0

Generalized state-space (genss) model describing the weighted
closed-loop transfer function of a control system. hinfstruct minimizes
the H∞ norm of CL0.

CL0 includes both the fixed and tunable components of the control
system in a single genss model. The tunable components of the control
system are represented as Control Design Blocks, and are stored in the
CL0.Blocks property of the genss model.

P

Continuous-time numeric LTI model representing the fixed elements
of the control architecture to be tuned. P can also include weighting
functions that capture design requirements. You can obtain P in two
ways:

• In MATLAB, model the fixed elements of your control system as
numeric LTI models. Then, use block-diagram building functions
(such as connect and feedback) to build P from the modeled
components. Also include any weighting functions that represent
your design requirements.

• If you have a Simulink model of your control system and have
Simulink Control Design™, use linlft to obtain a linear model of
the fixed elements of your control system. The linlft command
linearizes your Simulink model, excluding specified Simulink blocks
(the blocks that represent the controller elements you want to
tune). If you are using weighting functions to represent your design
requirements, connect them in series with the linear model of your
plant to obtain P.

C0

Single tunable component or cell array of tunable components of the
control structure.

Each entry in C0 represents one tunable element of your control
architecture, such as a PID controller, a gain block, or a fixed-order
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transfer function. The entries of C0 can be Control Design Blocks or
genss models.

For more information and examples of creating tunable models, see
“Models with Tunable Coefficients” in the Control System Toolbox™
User’s Guide.

options

Set of options for hinfstruct. Use hinfstructOptions to define
options. For information about the available options, see the
hinfstructOptions reference page.

Output
Arguments

CL

Tuned version of the generalized state-space (genss) model CL0.

The hinfstruct command tunes the free parameters of CL0 to achieve
a minimum H∞ norm. CL.Blocks contains the same types of Control
Design Blocks as CL0.Blocks, except that in CL, the parameters have
tuned values.

To access the tuned parameter values, use getValue. You can also
access them directly in CL.Blocks.

C

Tuned versions of the parametric models C0.

When C0 is a single parametric model, C is a parametric model of the
same type, with tuned parameter values.

When C0 is a cell array of parametric models, C is also a cell array.
The entries in C are parametric models of the same type as the
corresponding entries in C0.

gamma

Best achieved value for the closed-loop H∞ norm.
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In some cases, hinfstruct performs more than one minimization run
(when the hinfstructOptions option RandomStarts > 0). In such
cases, gamma is the smallest H∞ norm of all runs.

info

Data structure array containing results from each optimization run.
The fields of info are:

• Objective— Minimum H∞ norm value for each run.

When RandomStarts = 0, Objective = gamma.

• Iterations— Number of iterations before convergence for each run.

• TunedBlocks— Tuned control design blocks for each run.

TunedBlocks differs from C in that C contains only the result from
the best run. When RandomStarts = 0, TunedBlocks = C.

Algorithms hinfstruct uses specialized nonsmooth optimization techniques to
enforce closed-loop stability and minimize the H∞ norm as a function of
the tunable parameters. These techniques are based on the work in [1].

hinfstruct computes the H∞ norm using the algorithm of [2] and
structure-preserving eigensolvers from the SLICOT library. For more
information about the SLICOT library, see http://slicot.org.

References [1] P. Apkarian and D. Noll, "Nonsmooth H-infinity Synthesis," IEEE
Transactions on Automatic Control, Vol. 51, Number 1, 2006, pp. 71-86.

[2] Bruisma, N.A. and M. Steinbuch, "A Fast Algorithm to Compute the
H∞-Norm of a Transfer Function Matrix," System Control Letters, 14
(1990), pp. 287-293.

See Also hinfstructOptions | hinfsyn | ltiblock.gain | ltiblock.pid
| ltiblock.ss | ltiblock.tf | getValue | genss
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Related
Examples

• “Build Tunable Closed-Loop Model for Tuning with hinfstruct”
• Loop Shaping Design with HINFSTRUCT
• Decoupling Controller for a Distillation Column
• Fixed-Structure Autopilot for a Passenger Jet

Concepts • “What Is hinfstruct?”
• “Formulating Design Requirements as H-Infinity Constraints”
• “Structured H-Infinity Synthesis Workflow”
• “Models with Tunable Coefficients”

3-131



hinfstructOptions

Purpose Set options for hinfstruct

Syntax options = hinfstructOptions
options = hinfstructOptions(Name,Value)

Description options = hinfstructOptions returns the default option set for the
hinfstruct command.

options = hinfstructOptions(Name,Value) creates an option set
with the options specified by one or more Name,Value pair arguments.

Input
Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

hinfstructOptions takes the following Name arguments:

Display

String determining the amount of information to display during
hinfstruct optimization runs.

Display takes the following values:

• 'off'— hinfstruct runs in silent mode, displaying no information
during or after the run.

• 'iter' — display optimization progress after each iteration. The
display includes the value of the closed-loop H∞ norm after each
iteration. The display also includes a Progress value indicating the
percent change in the H∞ norm from the previous iteration.

• 'final' — display a one-line summary at the end of each
optimization run. The display includes the minimized value of the
closed-loop H∞ norm and the number of iterations for each run.
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Default: 'final'

MaxIter

Maximum number of iterations in each optimization run.

Default: 300

RandomStart

Number of additional optimizations starting from random values of the
free parameters in the controller.

If RandomStart = 0, hinfstruct performs a single optimization run
starting from the initial values of the tunable parameters. Setting
RandomStart = N > 0 runs N additional optimizations starting from N
randomly generated parameter values.

hinfstruct finds a local minimum of the gain minimization problem.
To increase the likelihood of finding parameter values that meet your
design requirements, set RandomStart > 0. You can then use the best
design that results from the multiple optimization runs.

Use with UseParallel = true to distribute independent optimization
runs among MATLAB workers (requires Parallel Computing Toolbox™
software).

Default: 0

UseParallel

Parallel processing flag. Set to true to enable parallel processing by
distributing randomized starts among MATLAB workers. Independent
optimization runs are performed concurrently. (Requires Parallel
Computing Toolbox software.)

Default: false

TargetGain
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Target H∞ norm.

The hinfstruct optimization stops when the H∞ norm (peak closed-loop
gain) falls below the specified TargetGain value.

Set TargetGain = 0 to optimize controller performance by minimizing
the peak closed-loop gain. Set TargetGain = Inf to just stabilize the
closed-loop system.

Default: 0

TolGain

Relative tolerance for termination. The optimization terminates when
the H∞ norm decreases by less than TolGain over 10 consecutive
iterations. Increasing TolGain speeds up termination, and decreasing
TolGain yields tighter final values.

Default: 0.001

MaxFrequency

Maximum closed-loop natural frequency.

Setting MaxFrequency constrains the closed-loop poles to satisfy
|p| < MaxFrequency.

To let hinfstruct choose the closed-loop poles automatically based
upon the system’s open-loop dynamics, set MaxFrequency = Inf. To
prevent unwanted fast dynamics or high-gain control, set MaxFrequency
to a finite value.

Specify MaxFrequency in units of 1/TimeUnit, relative to the TimeUnit
property of the system you are tuning.

Default: Inf

MinDecay

Minimum decay rate for closed-loop poles
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Constrains the closed-loop poles to satisfy Re(p) < -MinDecay.
Increase this value to improve the stability of closed-loop poles that do
not affect the closed-loop gain due to pole/zero cancellations.

Specify MinDecay in units of 1/TimeUnit, relative to the TimeUnit
property of the system you are tuning.

Default: 1e-7

Output
Arguments

options

Option set containing the specified options for the hinfstruct
command.

Examples Create Options Set for hinfstruct

Create an options set for a hinfstruct run using three random restarts
and a stability offset of 0.001. Also, configure the hinfstruct run to
stop as soon as the closed-loop gain is smaller than 1.

options = hinfstructOptions('TargetGain',1,...
'RandomStart',3,'StableOffset',1e-3);

Alternatively, use dot notation to set the values of options.

options = hinfstructOptions;
options.TargetGain = 1;
options.RandomStart = 3;
options.StableOffset = 1e-3;

Configure Option Set for Parallel Optimization Runs

Configure an option set for a hinfstruct run using 20 random restarts,
running these independent optimization runs concurrently on multiple
MATLAB workers.

If you have the Parallel Computing Toolbox software installed, you can
use parallel computing to speed up hinfstruct tuning of fixed-structure
control systems. When you run multiple randomized hinfstruct
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optimization starts, parallel computing speeds up tuning by distributing
the optimization runs among MATLAB workers.

Start a worker pool of MATLAB sessions using the Parallel Computing
Toolbox command matlabpool. For example:

matlabpool('open')

Create an hinfstructOptions set that specifies 20 random restarts to
run in parallel.

options = hinfstructOptions('RandomStart',20,'UseParallel',true);

Setting UseParallel to true enables parallel processing by distributing
the randomized starts among available MATLAB workers in the pool.

Use the hinfstructOptions set when you call hinfstruct. For
example, if you have already created a tunable closed loop model CL0,
the following command uses parallel computing to tune CL0.

[CL,gamma,info] = hinfstruct(CL0,options);

See Also hinfstruct
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Purpose Compute H∞ optimal controller for LTI plant

Syntax [K,CL,GAM,INFO] = hinfsyn(P)
[K,CL,GAM,INFO] = hinfsyn(P,NMEAS,NCON)
[K,CL,GAM,INFO] = hinfsyn(P,NMEAS,NCON,KEY1,VALUE1,KEY2,VALUE2,...)

Description hinfsyn computes a stabilizing H∞ optimal lti/ss controller K for
a partitioned lti plant P.

P
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The controller, K, stabilizes the P and has the same number of states as
P. The system P is partitioned where inputs to B1 are the disturbances,
inputs to B2 are the control inputs, output of C1 are the errors to be kept
small, and outputs of C2 are the output measurements provided to the
controller. B2 has column size (NCON) and C2 has row size (NMEAS). The
optional KEY and VALUE inputs determine tolerance, solution method
and so forth.

The closed-loop system is returned in CL and the achieved H∞ cost γ in
GAM. INFO is a struct array that returns additional information about
the design.
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H∞ control system CL= lft(P,K)= Ty u1 1
.

Optional Input Arguments

Property Value Description

'GMAX' real Initial upper bound on GAM (default=Inf)

'GMIN' real Initial lower bound on GAM (default=0)

'TOLGAM' real Relative error tolerance for GAM
(default=.01)

'S0' real Frequency S0 at which entropy is
evaluated, only applies to METHOD
'maxe' (default=Inf)

'METHOD' 'ric' Standard 2-Riccati solution (default)

'lmi' LMI solution

'maxe' Maximum entropy solution

'DISPLAY' 'off'

'on'

No command window display, or
command window displays synthesis
progress information (default)

When DISPLAY='on', the hinfsyn program displays several variables
indicating the progress of the algorithm. For each γ value being
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tested, the minimum magnitude, real part of the eigenvalues of the X
and Y Hamiltonian matrices are displayed along with the minimum
eigenvalue of X∞ and Y∞, which are the solutions to the X and Y Riccati
equations, respectively. The maximum eigenvalue of X∞Y∞, scaled by
γ–2,is also displayed. A # sign is placed to the right of the condition
that failed in the printout.

Output
Arguments

Description

K lti controller

CL= lft(P,K)

lti closed-loop system
Ty u1 1

GAM =
norm(CL,Inf)

H∞ cost γ =
Ty u1 1

∞

INFO Additional output information

Additional output — structure array INFO containing possible additional
information depending on METHOD)

INFO.AS All solutions controller, lti two-port LFT

INFO.KFI Full information gain matrix (constant feedback

u t K
x t

u tFI2
1

( )
( )
( )

=
⎡

⎣
⎢

⎤

⎦
⎥

INFO.KFC Full control gain matrix (constant output-injection;
KFC is the dual of KFI)

INFO.GAMFI H∞ cost for full information KFI
INFO.GAMFC H∞ cost for full control KFC
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Algorithms The default 'ric' method uses the two-Riccati formulae ([1],[2]) with
loopshifting [3]. In the case of the 'lmi' method, hinfsyn employs
the LMI technique ([4],[5],[6]). With 'METHOD' 'maxe', K returns the
max entropy H∞ controller that minimize an entropy integral relating
to the point s0; i.e.,

Entropy = 
γ
π

γ ω ω
ω

2
2

2

0
2 22 1 1 1 1

ln det ( ) ( )I T j T j
s

s
y u y u

o− ′
+

⎡

⎣

−
−∞

∞
∫ ⎢⎢

⎢

⎤

⎦
⎥
⎥

dω

where
Ty u1 1 is the closed-loop transfer function CL. With all methods,

hinfsyn uses a standard γ-iteration technique to determine the optimal
value of γ. Starting with high and low estimates of γ. The γ-iteration
is a bisection algorithm that iterates on the value of γ in an effort to
approach the optimal H∞ control design. The stopping criterion for the
bisection algorithm requires the relative difference between the last γ
value that failed and the last γ value that passed be less than TOLGAM
(default = .01)

At each value of γ, the algorithm employed requires tests to determine
whether a solution exists for a given γ value. In the case of the 'ric'
method, the conditions checked for the existence of a solution are:

• H and JHamiltonian matrices (which are formed from the state-space
data of P and the γ level) must have no imaginary-axis eigenvalues.

• the stabilizing Riccati solutions X∞ and Y∞ associated with the
Hamiltonian matrices must exist and be positive, semi-definite.

• spectral radius of (X∞,Y∞) must be less than or equal to γ
2.

When, DISPLAY is ’on’, the hinfsyn program displays several variables,
which indicate which of the above conditions are satisfied for each γ
value being tested. In the case of the default 'ric' method, the display
includes the current value of γ being tested, real part of the eigenvalues
of the X and Y Hamiltonian matrices along with the minimum
eigenvalue of X∞ and Y∞, which are the solutions to the X and Y Riccati
equations, respectively. The maximum eigenvalue of X∞Y∞, scaled by
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γ–2, is also displayed. A # sign is placed to the right of the condition that
failed in the printout. A similar display is produced with method 'lmi'

The algorithm works best when the following conditions are satisfied
by the plant:

D12 and D21 have full rank.

A j I B
C D
−⎡

⎣
⎢

⎤

⎦
⎥

ω 2

1 12
has full column rank for all ω R.

A j I B
C D
−⎡

⎣
⎢

⎤

⎦
⎥

ω 1

2 21
has full row rank for all ω R.

When the above rank conditions do not hold, the controller may
have undesirable properties: If D12 and D21 are not full rank, the H∞
controller K may have large high-frequency gain. If either of the latter
two rank conditions does not hold at some frequency ω, the controller
may have very lightly damped poles near that frequency ω.

In general, the solution to the infinity-norm optimal control problem is
non-unique. Whereas the K returned by hinfsyn is only a particular
F(s), when the 'ric' method is selected, the INFO.AS field of INFO
give you in addition the all- solution controller parameterization
KAS(s) such that all solutions to the infinity-norm control problem are
parameterized by a free stable contraction map U(s) constrained by

U s( ) )( ) <∞ 1 ; that is, every stabilizing controller K(s) that makes

T T jy u max y u1 1 1 1∞ ( ) <sup ( )
ω

σ ω γ

K=lft(INFO.AS,U)

where U is a stable LTI system satisfying norm(U,Inf) <1
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All-solution KAS(s) returned by INFO.AS

An important use of the infinity-norm control theory is for direct
shaping of closed-loop singular value Bode plots of control systems. In
such cases, the system P(s) will typically be the plant augmented with
suitable loop-shaping filters — see mixsyn.

Examples Following are three simple problems solved via hinfsyn.

Example 1: A random 4-by-5 plant with 3-states, NMEAS=2, NCON=2

rand('seed',0);randn('seed',0);
P=rss(3,4,5);
[K,CL,GAM]=hinfsyn(P,2,2);

The optimal H∞ cost in this case is GAM = 0.2641. You verify

that T T jy u max y u1 1 1 1∞ ( ) <sup ( )
ω

σ ω γ with a sigma plot

sigma(CL,ss(GAM));

Example 2: Mixed-Sensitivity
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G s
s
s

W
s

s
W W( ) ,

. ( )
, . , .= −

−
+

+
=1

1
0 1 1000

100 1
0 12 3 =   no 1

s=zpk('s');
G=(s-1)/(s+1);
W1=0.1*(s+100)/(100*s+1); W2=0.1; W3=[];
P=augw(G,W1,W2,W3);
[K,CL,GAM]=hinfsyn(P);
sigma(CL,ss(GAM));

In this case, GAM = 0.1854 = –14.6386 db

Example 3: Mixed sensitivity with W1 removed.

s=zpk('s');
G=(s-1)/(s+1);
W1=[]; W2=0.1; W3=[];
P=augw(G,W1,W2,W3)
[K,CL,GAM]=hinfsyn(P)

In this case, GAM=0, K=0, and CL=K*(1+G*K)=0.

Limitation The plant must be stabilizable from the control inputs u2 and detectable
from the measurement output y2:

• (A,B2) must be stabilizable and (C2,A) must be detectable.

Otherwise, an the hinfsyn returns an error.

References [1] Glover, K., and J.C. Doyle, “State-space formulae for all stabilizing
controllers that satisfy an H∞norm bound and relations to risk
sensitivity,” Systems and Control Letters, vol. 11, pp. 167–172, 1988.

[2] Doyle, J.C., K. Glover, P. Khargonekar, and B. Francis, “State-space
solutions to standard H2 and H∞ control problems,“ IEEE Transactions
on Automatic Control, vol. 34, no. 8, pp. 831–847, August 1989
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[3] Safonov, M.G., D.J.N. Limebeer, and R.Y. Chiang, “Simplifying the
H∞ Theory via Loop Shifting, Matrix Pencil and Descriptor Concepts”,
Int. J. Contr., vol. 50, no. 6, pp. 2467-2488, 1989.

[4] Packard, A., K. Zhou, P. Pandey, J. Leonhardson, and G. Balas,
“Optimal, constant I/O similarity scaling for full-information and
state-feedback problems,” Systems and Control Letters, 19:271–280,
1992.

[5] Gahinet, P., and P. Apkarian, “A linear matrix inequality approach
to H∞-control,” Int J. Robust and Nonlinear Control, 4(4):421–448,
July–August 1994.

[6] Iwasaki, T., and R.E. Skelton, “All controllers for the general
H∞-control problem: LMI existence conditions and state space
formulas,” Automatica, 30(8):1307–1317, August 1994.

See Also augw | h2syn | hinfstruct | loopsyn | mktito | ncfsyn
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Purpose Helper function for complexify

Syntax DeltaR = icomplexify(DeltaCR)

Description icomplexify works on structures to extract a real value from a pair
of related fields.

DeltaR = icomplexify(DeltaCR) affects field pairs of DeltaCR named
'foo' and 'foo_cmpxfy' where 'foo' can be any field name. DeltaR
is the same as DeltaCR except that the fields 'foo_cmpxfy' are
removed. complexify, by default, complexifies the real uncertainty
with ucomplex atoms, though optionally ultidyn atoms can be used. If
a ucomplex uncertainty was used to complexify the uncertain system,
the real parts of 'foo_cmpxfy' are added to the real parts of 'foo'. If a
ultidyn uncertainty was used to complexify the uncertain system, only
the real parts of 'foo' are returned.

See Also complexify | robuststab
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Purpose Create empty iconnect (interconnection) objects

Syntax H = iconnect

Description Interconnection objects (class iconnect) are an alternative to sysic,
and are used to build complex interconnections of uncertain matrices
and systems.

An iconnect object has 3 fields to be set by the user, Input, Output and
Equation. Input and Output are icsignal objects, while Equation.is a
cell-array of equality constraints (using equate) on icsignal objects.
Once these are specified, then the System property is the input/output
model, implied by the constraints in Equation. relating the variables
defined in Input and Output.

Examples iconnect can be used to create the transfer matrix M as described in
the following figure.

Create three scalar icsignal: r, e and y. Create an empty iconnect
object, M. Define the output of the interconnection to be [e; y], and
the input to be r. Define two constraints among the variables: e =
r-y, and y = (2/s) e. Get the transfer function representation of the
relationship between the input (r) and the output [e; y].

r = icsignal(1);
e = icsignal(1);
y = icsignal(1);
M = iconnect;
M.Input = r;
M.Output = [e;y];
M.Equation{1} = equate(e,r-y);
M.Equation{2} = equate(y,tf(2,[1 0])*e);
tf(M.System)
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The transfer functions from input to outputs are

s
#1: -----

s + 2

2
#2: -----

s + 2

By not explicitly introducing e, this can be done more concisely with
only one equality constraint.

r = icsignal(1);
y = icsignal(1);
N = iconnect;
N.Input = r;
N.Output = [r-y;y];
N.Equation{1} = equate(y,tf(2,[1 0])*(r-y));
tf(N.System)

You have created the same transfer functions from input to outputs.

s
#1: -----

s + 2

2
#2: -----

s + 2

You can also specify uncertain, multivariable interconnections using
iconnect. Consider two uncertain motor/generator constraints among
4 variables [V;I;T;W], V-R*I-K*W=0, and T=K*I. Find the uncertain
2x2 matrix B so that [V;T] = B*[W;I].

R = ureal('R',1,'Percentage',[-10 40]);
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K = ureal('K',2e-3,'Percentage',[-30 30]);

V = icsignal(1);

I = icsignal(1);

T = icsignal(1);

W = icsignal(1);

M = iconnect;

M.Input = [W;I];

M.Output = [V;T];

M.Equation{1} = equate(V-R*I-K*W,iczero(1));

M.Equation{2} = equate(T,K*I);

B = M.System

UMAT: 2 Rows, 2 Columns

K: real, nominal = 0.002, variability = [-30 30]%, 2 occurrences

R: real, nominal = 1, variability = [-10 40]%, 1 occurrence

B.NominalValue

ans =

0.0020 1.0000

0 0.0020

A simple system interconnection, identical to the system illustrated
in the sysic reference pages. Consider a three-input, two-output
state-space matrix T,

which has internal structure
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P = rss(3,2,2);
K = rss(1,1,2);
A = rss(1,1,1);
W = rss(1,1,1);
M = iconnect;
noise = icsignal(1);
deltemp = icsignal(1);
setpoint = icsignal(1);
yp = icsignal(2);
rad2deg = 57.3
rad2deg =

57.3000
M.Equation{1} = equate(yp,P*[W*deltemp;A*K*[noise+yp(2);setpoint]]);
M.Input = [noise;deltemp;setpoint];
M.Output = [rad2deg*yp(1);setpoint-yp(2)];
T = M.System;
size(T)
State-space model with 2 outputs, 3 inputs, and 6 states.

Algorithms Each equation represents an equality constraint among the variables.
You choose the input and output variables, and the imp2exp function
makes the implicit relationship between them explicit.
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Limitations The syntax for iconnect objects and icsignals is very flexible. Without
care, you can build inefficient (i.e., nonminimal) representations
where the state dimension of the interconnection is greater than the
sum of the state dimensions of the components. This is in contrast to
sysic. In sysic, the syntax used to specify inputs to systems (the
input_to_ListedSubSystemName variable) forces you to include each
subsystem of the interconnection only once in the equations. Hence,
interconnections formed with sysic are componentwise minimal. That
is, the state dimension of the interconnection equals the sum of the
state dimensions of the components.

See Also icsignal | sysic
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Purpose Create icsignal object of specified dimension

Syntax v = icsignal(n);
v = icsignal(n,'name')

Description icsignal creates an icsignal object, which is a symbolic column
vector. The icsignal object is used with iconnect objects to specify
signal constraints described by the interconnection of components.

v = icsignal(n) creates an icsignal object of vector length n. The
value of n must be a nonnegative integer. icsignal objects are symbolic
column vectors, used in conjunction with iconnect (interconnection)
objects to specify the signal constraints described by an interconnection
of components.

v = icsignal(n,name) creates an icsignal object of dimension n, with
internal name identifier given by the character string argument name.

See Also iconnect | sysic
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Purpose System realization via Hankel singular value decomposition

Syntax [a,b,c,d,totbnd,hsv] = imp2ss(y)
[a,b,c,d,totbnd,hsv] = imp2ss(y,ts,nu,ny,tol)
[ss,totbnd,hsv] = imp2ss(imp)
[ss,totbnd,hsv] = imp2ss(imp,tol)

Description The function imp2ss produces an approximate state-space realization of
a given impulse response

imp=mksys(y,t,nu,ny,'imp');

using the Hankel SVD method proposed by S. Kung [2]. A
continuous-time realization is computed via the inverse Tustin
transform (using bilin) if t is positive; otherwise a discrete-time
realization is returned. In the SISO case the variable y is the impulse
response vector; in the MIMO case y is an N+1-column matrix
containing N + 1 time samples of the matrix-valued impulse response
H0, ..., HN of an nu-input, ny-output system stored row-wise:

y = [H0(:)′;H2(:)′; H3(:)′; ... ;HN(:)′

The variable tol bounds the H∞ norm of the error between the
approximate realization (a, b, c, d) and an exact realization of y; the
order, say n, of the realization (a, b, c, d) is determined by the infinity
norm error bound specified by the input variable tol. The inputs ts,
nu, ny, tol are optional; if not present they default to the values ts =

0, nu = 1, ny = (number of rows of y)/nu, tol = 0 01 1. σ . The output

hsv = ′[ , ,...]σ σ1 2 returns the singular values (arranged in descending
order of magnitude) of the Hankel matrix:
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Γ =

⎡

⎣
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⎢
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Denoting by GN a high-order exact realization of y, the low-order
approximate model G enjoys the H∞ norm bound

G G totbndN− ≤∞

where

totbnd i
i n

N
=

= +
∑2

1
σ .

Algorithms The realization (a, b, c, d) is computed using the Hankel SVD procedure
proposed by Kung [2] as a method for approximately implementing
the classical Hankel factorization realization algorithm. Kung’s SVD
realization procedure was subsequently shown to be equivalent to doing
balanced truncation (balmr) on an exact state-space realization of the
finite impulse response {y(1),....y(N)} [3]. The infinity norm error bound
for discrete balanced truncation was later derived by Al-Saggaf and
Franklin [1]. The algorithm is as follows:

1 Form the Hankel matrix Γ from the data y.

2 Perform SVD on the Hankel matrix

Γ = ∑ = [ ] ∑
∑

⎡

⎣
⎢

⎤

⎦
⎥
⎡

⎣
⎢

⎤

⎦
⎥ = ∑U V U U

V
V

U V*
*
*

*1 2
1

2

1

2
1 1 1

0
0

where Σ1 has dimension n × n and the entries of Σ2 are nearly zero.
U1 and V1 have ny and nu columns, respectively.
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3 Partition the matrices U1 and V1 into three matrix blocks:

U
U
U
U

V
V
V

1
11

12

13

11

12

13

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

where U U Cny n
11 13, ∈ ×  and V V Cnu n

11 13, ∈ ×  .

4 A discrete state-space realization is computed as

A U

B V

C U

D H

= ∑ ∑

= ∑

= ∑
=

− −

−

−

1 1

1 11

11 1

0

1
2

1
2

1
2

1
2

  

 

 

*

where

U
U
U

U
U

=
⎡

⎣
⎢

⎤

⎦
⎥
′ ⎡

⎣
⎢

⎤

⎦
⎥

11

12

12

13
 

5 If the sampling time t is greater than zero, then the realization is
converted to continuous time via the inverse of the Tustin transform

s
t

z
z

= −
+

2 1
1

 .

Otherwise, this step is omitted and the discrete-time realization
calculated in Step 4 is returned.

References [1] Al-Saggaf, U.M., and G.F. Franklin, “An Error Bound for a Discrete
Reduced Order Model of a Linear Multivariable System,” IEEE Trans.
on Autom. Contr., AC-32, 1987, p. 815-819.
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[2] Kung, S.Y., “A New Identification and Model Reduction Algorithm
via Singular Value Decompositions,” Proc.Twelth Asilomar Conf. on
Circuits, Systems and Computers, November 6-8, 1978, p. 705-714.

[3] Silverman, L.M., and M. Bettayeb, “Optimal Approximation of
Linear Systems,” Proc. American Control Conf., San Francisco, CA,
1980.
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Purpose True for parameter-dependent systems

Syntax bool = ispsys(sys)

Description bool = ispsys(sys) returns 1 if sys is a polytopic or
parameter-dependent system.

See Also psys | psinfo
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Purpose Check whether argument is uncertain class type

Syntax B = isuncertain(A)

Description Returns true if input argument is uncertain, false otherwise.
Uncertain classes are umat, ufrd, uss, ureal, ultidyn, ucomplex,
ucomplexm, and udyn.

Examples In this example, you verify the correct operation of isuncertain on
double, ureal, ss, and uss objects.

isuncertain(rand(3,4))
ans =

0
isuncertain(ureal('p',4))
ans =

1
isuncertain(rss(4,3,2))
ans =

0
isuncertain(rss(4,3,2)*[ureal('p1',4) 6;0 1])
ans =

1

Limitations isuncertain only checks the class of the input argument, and does not
actually verify that the input argument is truly uncertain. Create a
umat by lifting a constant (i.e., not-uncertain) matrix to the umat class.

A = umat([2 3;4 5;6 7]);

Note that although A is in class umat, it is not actually uncertain.
Nevertheless, based on class, the result of isuncertain(A) is true.

isuncertain(A)
ans =

1
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The result of simplify(A) is a double, and hence not uncertain.

isuncertain(simplify(A))
ans =

0
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Purpose Decompose uncertain objects into fixed normalized and fixed uncertain
parts

Syntax [M,Delta] = lftdata(A);
[M,Delta] = lftdata(A,List);
[M,Delta,Blkstruct] = lftdata(A);
[M,Delta,Blkstruct,Normunc] = lftdata(A);

Description lftdata decomposes an uncertain object into a fixed certain part and a
normalized uncertain part. lftdata can also partially decompose an
uncertain object into an uncertain part and a normalized uncertain part.
Uncertain objects (umat, ufrd, uss) are represented as certain (i.e.,
not-uncertain) objects in feedback with block-diagonal concatenations of
uncertain elements.

[M,Delta] = lftdata(A) separates the uncertain object A into a
certain object M and a normalized uncertain matrix Delta such that A is
equal to lft(Delta,M), as shown below.

�����

�

If A is a umat, then M will be double; if A is a uss, then M will be ss; if A
is a ufrd, then M will be frd. In all cases, Delta is a umat.

[M,Delta] = lftdata(A,List) separates the uncertain object A into
an uncertain object M, in feedback with a normalized uncertain matrix
Delta. List is a cell (or char) array of names of uncertain elements of A
that make up Delta. All other uncertainty in A remains in M.

lftdata(A,fieldnames(A.Uncertainty)) is the same as lftdata(A).

[M,DELTA,BLKSTRUCT] = lftdata(A) returns an N-by-1 structure
array BLKSTRUCT, where BLKSTRUCT(i) describes the i-th normalized
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uncertain element. This uncertainty description can be passed directly
to the low-level structured singular value analysis function mussv.

[M,DELTA,BLKSTRUCT,NORMUNC] = lftdata(A) returns the cell array
NORMUNC of normalized uncertain elements. Each normalized element
has the string 'Normalized' appended to its original name to avoid
confusion. Note that lft(blkdiag(NORMUNC{:}),M) is equivalent to A.

Examples Create an uncertain matrix A with 3 uncertain parameters p1, p2 and
p3. You can decompose A into its certain, M, and normalized uncertain
parts, Delta.

p1 = ureal('p1',-3,'perc',40);
p2 = ucomplex('p2',2);
A = [p1 p1+p2;1 p2];
[M,Delta] = lftdata(A);

You can inspect the difference between the original uncertain matrix,
A, and the result formed by combining the two results from the
decomposition.

simplify(A-lft(Delta,M))
ans =

0 0
0 0

M
M =

0 0 1.0954 1.0954
0 0 0 1.0000

1.0954 1.0000 -3.0000 -1.0000
0 1.0000 1.0000 2.0000

You can check the worst-case norm of the uncertain part using wcnorm.
Compare samples of the uncertain part A with the uncertain matrix A.

wcn = wcnorm(Delta)
wcn =

lbound: 1.0000
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ubound: 1.0001
usample(Delta,5)
ans(:,:,1) =

0.8012 0
0 0.2499 + 0.6946i

ans(:,:,2) =
0.4919 0

0 0.2863 + 0.6033i
ans(:,:,3) =

-0.1040 0
0 0.7322 - 0.3752i

ans(:,:,4) =
0.8296 0

0 0.6831 + 0.1124i
ans(:,:,5) =

0.6886 0
0 0.0838 + 0.3562i

Uncertain Systems

Create an uncertain matrix A with 2 uncertain real parameters v1 and
v2 and create an uncertain system G using A as the dynamic matrix and
simple matrices for the input and output.

A = [ureal('p1',-3,'perc',40) 1;1 ureal('p2',-2)];
sys = ss(A,[1;0],[0 1],0);
sys.InputGroup.ActualIn = 1;
sys.OutputGroup.ActualOut = 1;

You can decompose G into a certain system, Msys, and a normalized
uncertain matrix, Delta. You can see from Msys that it is certain and
that the input and output groups have been adjusted.

[Msys,Delta] = lftdata(sys);
Msys

a =
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x1 x2
x1 -3 1
x2 1 -2

b =
u1 u2 u3

x1 1.095 0 1
x2 0 1 0

c =
x1 x2

y1 1.095 0
y2 0 1
y3 0 1

d =
u1 u2 u3

y1 0 0 0
y2 0 0 0
y3 0 0 0

Input groups:
Name Channels

ActualIn 3
p1_NC 1
p2_NC 2

Output groups:
Name Channels

ActualOut 3
p1_NC 1
p2_NC 2

Continuous-time model.
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You can compute the norm on samples of the difference between the
original uncertain matrix and the result formed by combining Msys
and Delta.

norm(usample(sys-lft(Delta,Msys),'p1',4,'p2',3),'inf')
ans =

0 0 0
0 0 0
0 0 0
0 0 0

Partial Decomposition

Create an uncertain matrix A and derive an uncertain matrix B
using an implicit-to-explicit conversion, imp2exp. Note that B has 2
uncertain parameters R and K. You can decompose B into certain, M, and
normalized uncertain parts, Delta.

R = ureal('R',1,'Percentage',[-10 40]);
K = ureal('K',2e-3,'Percentage',[-30 30]);
A = [1 -R 0 -K;0 -K 1 0];
Yidx = [1 3];
Uidx = [4 2];
B = imp2exp(A,Yidx,Uidx);
[M,Delta] = lftdata(B);

The same operation can be performed by defining the uncertain
parameters, K and R, to be extracted.

[MK,DeltaR] = lftdata(B,'R');
MK
UMAT: 3 Rows, 3 Columns

K: real, nominal = 0.002, variability = [-30 30]%, 2 occurrences
[MR,DeltaK] = lftdata(B,'K');
MR
UMAT: 4 Rows, 4 Columns

R: real, nominal = 1, variability = [-10 40]%, 1 occurrence
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simplify(B-lft(Delta,M))
ans =

0 0
0 0

simplify(B-lft(DeltaR,MK))
ans =

0 0
0 0

simplify(B-lft(DeltaK,MR))
ans =

0 0
0 0

Sample and inspect the uncertain part as well as the difference between
the original uncertain matrix and the sampled matrix. You can see the
result formed by combining the two results from the decomposition.

[Mall,Deltaall] = lftdata(B,{'K';'R'});
simplify(Mall)-M
ans =

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

See Also lft | ssdata
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Purpose Specify or display systems of LMIs as MATLAB expressions

Syntax lmiedit

Description lmiedit is a graphical user interface for the symbolic specification of
LMI problems. Typing lmiedit calls up a window with two editable
text areas and various buttons. To specify an LMI system,

1 Give it a name (top of the window).

2 Declare each matrix variable (name and structure) in the upper
half of the window. The structure is characterized by its type (S
for symmetric block diagonal, R for unstructured, and G for other
structures) and by an additional structure matrix similar to the
second input argument of lmivar. Please use one line per matrix
variable in the text editing areas.

3 Specify the LMIs as MATLAB expressions in the lower half of the
window. An LMI can stretch over several lines. However, do not
specify more than one LMI per line.

Once the LMI system is fully specified, you can perform the following
operations by pressing the corresponding button:

• Visualize the sequence of lmivar/lmiterm commands needed to
describe this LMI system (view commands buttons)

• Conversely, display the symbolic expression of the LMI system
produced by a particular sequence of lmivar/lmiterm commands
(click the describe... buttons)

• Save the symbolic description of the LMI system as a MATLAB
string (save button). This description can be reloaded later on by
pressing the load button

• Read a sequence of lmivar/lmiterm commands from a file (read
button). The matrix expression of the LMI system specified by these
commands is then displayed by clicking on describe the LMIs...
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• Write in a file the sequence of lmivar/lmiterm commands needed to
specify a particular LMI system (write button)

• Generate the internal representation of the LMI system by pressing
create. The result is written in a MATLAB variable with the same
name as the LMI system

Tips Editable text areas have built-in scrolling capabilities. To activate the
scroll mode, click in the text area, maintain the mouse button down,
and move the mouse up or down. The scroll mode is only active when
all visible lines have been used.

See Also lmivar | lmiterm | newlmi | lmiinfo
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Purpose Information about variables and term content of LMIs

Syntax lmiinfo

Description lmiinfo provides qualitative information about the system of LMIs
lmisys. This includes the type and structure of the matrix variables,
the number of diagonal blocks in the inner factors, and the term content
of each block.

lmiinfo is an interactive facility where the user seeks specific pieces of
information. General LMIs are displayed as

N' * L(x) * N < M' * R(x) * M

where N,M denote the outer factors and L,R the left and right inner
factors. If the outer factors are missing, the LMI is simply written as

L(x) < R(x)

If its right side is zero, it is displayed as

N' * L(x) * N < 0

Information on the block structure and term content of L(x) and R(x) is
also available. The term content of a block is symbolically displayed as

C1 + A1*X2*B1 + B1'*X2*A1' + a2*X1 + x3*Q1

with the following conventions:

• X1, X2, x3 denote the problem variables. Upper-case X indicates
matrix variables while lower-case x indicates scalar variables. The
labels 1,2,3 refer to the first, second, and third matrix variable in
the order of declaration.

• Cj refers to constant terms. Special cases are I and –I (I = identity
matrix).
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• Aj, Bj denote the left and right coefficients of variable terms.
Lower-case letters such as a2 indicate a scalar coefficient.

• Qj is used exclusively with scalar variables as in x3*Q1.

The index j in Aj, Bj, Cj, Qj is a dummy label. Hence C1may appear
in several blocks or several LMIs without implying any connection
between the corresponding constant terms. Exceptions to this rule are
the notations A1*X2*A1' and A1*X2*B1 + B1'*X2'*A1' which indicate
symmetric terms and symmetric pairs in diagonal blocks.

Examples Consider the LMI

0
2− + + +

−

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

X A YB B Y A I XC

C X zI

T T T

T

where the matrix variables are X of Type 1, Y of Type 2, and z scalar. If
this LMI is described in lmis, information about X and the LMI block
structure can be obtained as follows:

lmiinfo(lmis)

LMI ORACLE
------

This is a system of 1 LMI with 3 variable matrices

Do you want information on
(v) matrix variables (l) LMIs (q) quit

?> v

Which variable matrix (enter its index k between 1 and 3) ? 1
X1 is a 2x2 symmetric block diagonal matrix

its (1,1)-block is a full block of size 2

-------
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This is a system of 1 LMI with 3 variable matrices
Do you want information on

(v) matrix variables (l) LMIs (q) quit

?> l

Which LMI (enter its number k between 1 and 1) ? 1

This LMI is of the form
0 < R(x)

where the inner factor(s) has 2 diagonal block(s)

Do you want info on the right inner factor ?

(w) whole factor (b) only one block
(o) other LMI (t) back to top level

?> w

Info about the right inner factor

block (1,1) : I + a1*X1 + A2*X2*B2 + B2'*X2'*A2'

block (2,1) : A3*X1

block (2,2) : x3*A4

(w) whole factor (b) only one block
(o) other LMI (t) back to top level

------

This is a system of 1 LMI with 3 variable matrices

Do you want information on
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(v) matrix variables (l) LMIs (q) quit

?> q

It has been a pleasure serving you!

Note that the prompt symbol is ?> and that answers are either indices
or letters. All blocks can be displayed at once with option (w), or you
can prompt for specific blocks with option (b).

Tips lmiinfo does not provide access to the numerical value of LMI
coefficients.

See Also decinfo | lminbr | matnbr | decnbr
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Purpose Return number of LMIs in LMI system

Syntax k = lminbr(lmisys)

Description lminbr returns the number k of linear matrix inequalities in the LMI
problem described in lmisys.

See Also lmiinfo | matnbr
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Purpose Specify LMI regions for pole placement

Syntax region = lmireg
region = lmireg(reg1,reg2,...)

Description lmireg is an interactive facility to specify the LMI regions involved
in multi-objective H∞ synthesis with pole placement constraints (see
msfsyn). Recall that an LMI region is any convex subset D of the
complex plane that can be characterized by an LMI in z and z¯, i.e.,

D z C L Mz M zT= ∈ + + <{ : }0

for some fixed real matrices M and L = LT. This class of regions
encompasses half planes, strips, conic sectors, disks, ellipses, and any
intersection of the above.

Calling lmireg without argument starts an interactive query/answer
session where you can specify the region of your choice. The matrix
region = [L, M] is returned upon termination. This matrix description of
the LMI region can be passed directly to msfsyn for synthesis purposes.

The function lmireg can also be used to intersect previously defined
LMI regions reg1, reg2,.... The output region is then the [L, M]
description of the intersection of these regions.

See Also msfsyn
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Purpose Specify term content of LMIs

Syntax lmiterm(termID,A,B,flag)

Description lmiterm specifies the term content of an LMI one term at a time. Recall
that LMI term refers to the elementary additive terms involved in the
block-matrix expression of the LMI. Before using lmiterm, the LMI
description must be initialized with setlmis and the matrix variables
must be declared with lmivar. Each lmiterm command adds one extra
term to the LMI system currently described.

LMI terms are one of the following entities:

• outer factors

• constant terms (fixed matrices)

• variable terms AXB or AXTB where X is a matrix variable and A and
B are given matrices called the term coefficients.

When describing an LMI with several blocks, remember to specify only
the terms in the blocks on or below the diagonal (or equivalently,
only the terms in blocks on or above the diagonal). For instance, specify
the blocks (1,1), (2,1), and (2,2) in a two-block LMI.

In the calling of limterm, termID is a four-entry vector of integers
specifying the term location and the matrix variable involved.

termID 
p
p

( )1 =
+
−

⎧
⎨
⎩

where positive p is for terms on the left-side of the p-th LMI and
negative p is for terms on the right-side of the p-th LMI.

Recall that, by convention, the left side always refers to the smaller
side of the LMI. The index p is relative to the order of declaration and
corresponds to the identifier returned by newlmi.
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termID
0,0  for outer factors

 for terms in the 
( : )

[ , ]
2 3 =

[ ]
i j (( , )i j -th block of the left or right inner factor

termID

⎧
⎨
⎩

(( )

-

4 =

0 for outer factors
 for variable terms 

 for var

x AXB

x iiable terms AX BT

⎧

⎨
⎪

⎩
⎪

where x is the identifier of the matrix variable X as returned by lmivar.

The arguments A and B contain the numerical data and are set
according to:

Type of Term A B

outer factor N matrix value of N omit

constant term C matrix value of C omit

variable term

AXB or AXTB

matrix value of A

(1 if A is absent)

matrix value of B

(1 if B is absent)

Note that identity outer factors and zero constant terms need not be
specified.

The extra argument flag is optional and concerns only conjugated
expressions of the form

(AXB) + (AXBT) = AXB + BTX(T)AT

in diagonal blocks. Setting flag = 's' allows you to specify such
expressions with a single lmiterm command. For instance,

lmiterm([1 1 1 X],A,1,'s')

adds the symmetrized expression AX + XTAT to the (1,1) block of the
first LMI and summarizes the two commands

lmiterm([1 1 1 X],A,1)
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lmiterm([1 1 1 X],1,A')

Aside from being convenient, this shortcut also results in a more
efficient representation of the LMI.

Examples Consider the LMI

2 0
0

2 3 1

1

1 1

2

AX A x E DD B X

X B I
M CX C CX C

fX

T T T

T
T

T T T− +

−

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
< +

−

⎛

⎝
⎜⎜

⎞

⎠⎠
⎟⎟M

where X1, X2 are matrix variables of Types 2 and 1, respectively, and x3
is a scalar variable (Type 1).

After initializing the LMI description with setlmis and declaring the
matrix variables with lmivar, the terms on the left side of this LMI
are specified by:

lmiterm([1 1 1 X2],2*A,A') % 2*A*X2*A'
lmiterm([1 1 1 x3],-1,E) % -x3*E
lmiterm([1 1 1 0],D*D') % D*D'
lmiterm([1 2 1 -X1],1,B) % X1'*B
lmiterm([1 2 2 0],-1) % -I

Here X1, X2, X3 should be the variable identifiers returned by lmivar.

Similarly, the term content of the right side is specified by:

lmiterm([-1 0 0 0],M) % outer factor M
lmiterm([-1 1 1 X1],C,C','s') % C*X1*C'+C*X1'*C'
lmiterm([-1 2 2 X2],-f,1) % -f*X2

Note that CX1C
T + CX1

TCT is specified by a single lmiterm command
with the flag 's' to ensure proper symmetrization.

See Also setlmis | lmivar | getlmis | lmiedit | newlmi
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Purpose Specify matrix variables in LMI problem

Syntax X = lmivar(type,struct)
[X,n,sX] = lmivar(type,struct)

Description lmivar defines a new matrix variable X in the LMI system currently
described. The optional output X is an identifier that can be used for
subsequent reference to this new variable.

The first argument type selects among available types of variables and
the second argument struct gives further information on the structure
of X depending on its type. Available variable types include:

type=1: Symmetric matrices with a block-diagonal structure. Each
diagonal block is either full (arbitrary symmetric matrix), scalar (a
multiple of the identity matrix), or identically zero.

If X has R diagonal blocks, struct is an R-by-2 matrix where

• struct(r,1) is the size of the r-th block

• struct(r,2) is the type of the r-th block (1 for full, 0 for scalar, –1
for zero block).

type=2: Full m-by-n rectangular matrix. Set struct = [m,n] in this
case.

type=3: Other structures. With Type 3, each entry of X is specified as
zero or ±x where xn is the n-th decision variable.

Accordingly, struct is a matrix of the same dimensions as X such that

• struct(i,j)=0 if X(i, j) is a hard zero

• struct(i,j)=n if X(i, j) = xn

• struct(i,j)= n if X(i, j) = –xn

Sophisticated matrix variable structures can be defined with Type 3. To
specify a variable X of Type 3, first identify how many free independent
entries are involved in X. These constitute the set of decision variables
associated with X. If the problem already involves n decision variables,
label the new free variables as xn+1, . . ., xn+p. The structure of X is then
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defined in terms of xn+1, . . ., xn+p as indicated above. To help specify
matrix variables of Type 3, lmivar optionally returns two extra outputs:
(1) the total number n of scalar decision variables used so far and (2)
a matrix sX showing the entry-wise dependence of X on the decision
variables x1, . . ., xn.

Examples Example 1

Consider an LMI system with three matrix variables X1, X2, X3 such that

• X1 is a 3-by-3 symmetric matrix (unstructured),

• X2 is a 2-by-4 rectangular matrix (unstructured),

• X3 =

Δ⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

0 0
0 0
0 0

1

2 2

δ
δ I

where Δ is an arbitrary 5-by-5 symmetric matrix, δ1 and δ2 are
scalars, and I2 denotes the identity matrix of size 2.

These three variables are defined by

setlmis([])
X1 = lmivar(1,[3 1]) % Type 1
X2 = lmivar(2,[2 4]) % Type 2 of dim. 2x4
X3 = lmivar(1,[5 1;1 0;2 0]) % Type 1

The last command defines X3 as a variable of Type 1 with one full block
of size 5 and two scalar blocks of sizes 1 and 2, respectively.

Example 2

Combined with the extra outputs n and sX of lmivar, Type 3 allows
you to specify fairly complex matrix variable structures. For instance,
consider a matrix variable X with structure
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X
X

X
=
⎛

⎝
⎜

⎞

⎠
⎟

1

2

0
0

where X1 and X2 are 2-by-3 and 3-by-2 rectangular matrices,
respectively. You can specify this structure as follows:

1 Define the rectangular variables X1 and X2 by

setlmis([])
[X1,n,sX1] = lmivar(2,[2 3])
[X2,n,sX2] = lmivar(2,[3 2])

The outputs sX1 and sX2 give the decision variable content of X1
and X2:

sX1

sX1 =
1 2 3
4 5 6

sX2

sX2 =
7 8
9 10
11 12

For instance, sX2(1,1)=7 means that the (1,1) entry of X2 is the
seventh decision variable.

2 Use Type 3 to specify the matrix variable X and define its structure
in terms of those of X1 and X2:

[X,n,sX] = lmivar(3,[sX1,zeros(2);zeros(3),sX2])

The resulting variable X has the prescribed structure as confirmed by

3-178



lmivar

sX

sX =
1 2 3 0 0
4 5 6 0 0
0 0 0 7 8
0 0 0 9 10
0 0 0 11 12

See Also setlmis | lmiterm | getlmis | lmiedit | skewdec | delmvar |
setmvar
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Purpose Stability margin analysis of LTI and Simulink feedback loops

Syntax [cm,dm,mm] = loopmargin(L)
[m1,m2] = loopmargin(L,MFLAG)

[cmi,dmi,mmi,cmo,dmo,mmo,mmio] = loopmargin(P,C)

[m1,m2,m3] = loopmargin(P,C,MFLAG)

Description [cm,dm,mm] = loopmargin(L) analyzes the multivariable feedback
loop consisting of the loop transfer matrix L (size N-by-N) in negative
feedback with an N-by-N identity matrix.

cm, or classical gain and phase margins, is an N-by-1 structure
corresponding to loop-at-a-time gain and phase margins for each
channel (See allmargin for details on the fields of cm.)

dm is an N-by-1 structure corresponding to loop-at-a-time disk gain and
phase margins for each channel. The disk margin for the i-th feedback
channel defines a circular region centered on the negative real axis at
the average GainMargin (GM), e.g. , (GMlow+GMhigh)/2, such that L(i,i)
does not enter that region. Gain and phase disk margin bounds are
derived from the radius of the circle, calculated based on the balanced
sensitivity function.

mm, or multiloop disk margin, is a structure corresponding to
simultaneous, independent, variations in the individual channels of
loop transfer matrix L. mm calculates the largest region such that for all
gain and phase variations, occurring independently in each channel, lie
inside the region, that the closed-loop system is stable. Note that mm is
a single structure, independent of because the number of channels,
variations in all channels are handled simultaneously. As in the case
for disk margin, the guaranteed bounds are calculated based on a
balanced sensitivity function.

If L is a ss/tf/zpk object, the frequency range and number of frequency
points used to calculate dm and mm margins are chosen automatically.

Output arguments can be limited to only those requested using an
optional character string argument. [m1,m2] = loopmargin(L,'m,c')
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returns the multi-loop diskmargin ('m') in m1, and the classical margins
('c') in m2. Use 'd' to specify the disk margin. This optional second
argument may be any combination, in any order, of the 3 characters
'c', 'd' and 'm'.

[cmi,dmi,mmi,cmo,dmo,mmo,mmio] = (P,C) analyzes the
multivariable feedback loop consisting of the controller C in negative
feedback with the plant, P. C should only be the compensator in the
feedback path, without reference channels, if it is a 2-Dof architecture.
That is, if the closed-loop system has a 2-Dof architecture the reference
channel of the controller should be eliminated, resulting in a 1-Dof
architecture, as shown.

cmi,dmi and mmi structures correspond to the classical loop-at-a-time
gain and phase margins, disk margins and multiloop channel margins
at the plant input respectively. The structures cmo, dmo and mmo
have the same fields as described for cmi, dmi and mmi though they
correspond to the plant outputs. mmio, or multi-input/multi-output
margins, is a structure corresponding to simultaneous, independent,
variations in all the individual input and output channels of the
feedback loops. mmio has the same fields as mmi and mmo.

If the closed-loop system is an ss/tf/zpk, the frequency range and
number of points used to calculate cm, dm and mm margins are chosen
automatically.

Output arguments can be limited to only those requested using an
optional character string argument. [m1,m2,m3] = (L,'mo,ci,mm')
returns the multi-loop diskmargin at the plant output ('mo') in m1,
the classical margins at the plant input ('ci') in m2, and the disk
margins for simultaneous, independent variations in all input and
output channels ('mm') in m3. This optional third argument may be
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any comnination, in any order, of the 7 character pairs ’ci', ’di’, 'mi',
'co', 'do, 'mo', and 'mm'.

Usage with Simulink

[cm,dm,mm] = loopmargin(Model,Blocks,Ports) does a multi-loop
stability margin analysis using Simulink Control Design software.
Model specifies the name of the Simulink diagram for analysis. The
margin analysis points are defined at the output ports (Ports) of blocks
(Blocks) within the model. Blocks is a cell array of full block path
names and Ports is a vector of the same dimension as Blocks. If all
Blocks have a single output port, then Ports would be a vector of ones
with the same length as Blocks.

Three types of stability margins are computed: loop-at-a-time classical
gain and phase margins (cm), loop-at-a-time disk margins (dm) and a
multi-loop disk margin (mm).

[cm,dm,mm] = loopmargin(Model,Blocks,Ports,OP) uses the
operating point object OP to create linearized systems from the Simulink
Model.

[cm,dm,mm,info] = loopmargin(Model,Blocks,Ports,OP) returns
info in addition to the margins. info is a structure with fields
OperatingPoint, LinearizationIO and SignalNames corresponding
to the analysis.

Margin output arguments can be limited to only those requested using an
optional charcter string argument. INFO is always the last output. For
example, [mm,cm,info] = loopmargin(Model,Blocks,Ports,'m,c')
returns the multi-loop diskmargin ('m') in mm, the classical margins
('c') in cm, and the info structure.

Basic Syntax

[cm,dm,mm] = loopmargin(L) cm is calculated using the allmargin
command and has the same fields as allmargin. The cm is a structure
with the following fields:
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Field Description

GMFrequency All –180 deg crossover frequencies (in
radians-per-second)

GainMargin Corresponding gain margins (GM = 1/L where L is the
gain at crossover)

PhaseMargin Corresponding phase margins (in degrees)

PMFrequency All 0 dB crossover frequencies (in radians-per-second)

DelayMargin Delay margins (in seconds for continuous-time
systems, and multiples of the sample time for
discrete-time systems)

Stable 1 if nominal closed loop is stable, 0 otherwise. If L is a
frd or ufrd object, the Stable flag is set to NaN.

dm, or Disk Margin, is a structure with the following fields

Field Description

GainMargin Smallest gain variation (GM) such that a disk centered
at the point -(GM(1) + GM(2))/2 would just touch the
loop transfer function

PhaseMargin Smallest phase variation, in degrees, corresponding to
the disk described in the GainMargin field (degrees)

Frequency Associated with GainMargin/PhaseMargin fields (in
radians-per-second)

mm is a structure with the following fields.
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Field Description

GainMargin Guaranteed bound on simultaneous, independent,
gain variations allowed in all plant channels

PhaseMargin Guaranteed bound on simultaneous, independent,
phase variations allowed in all plant channels
(degrees)

Frequency Associated with GainMargin/PhaseMargin fields (in
radians-per-second)

Examples MIMO Loop-at-a-Time Margins

This example is designed to illustrate that loop-at-a-time margins
(gain, phase, and/or distance to –1) can be inaccurate measures of
multivariable robustness margins. You will see that margins of the
individual loops can be very sensitive to small perturbations within
other loops.

The nominal closed-loop system considered here is as follows

G and K are 2-by-2 multiinput/multioutput (MIMO) systems, defined as

G
s

s s

s s
K I=

+

− +

− + −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=1 1

12 2

2

2 2
α

α α

α α

( )

( )
,  

Set α: = 10, construct G in state-space form, and compute its frequency
response.

a = [0 10;-10 0];
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b = eye(2);
c = [1 8;-10 1];
d = zeros(2,2);
G = ss(a,b,c,d);
K = [1 -2;0 1];
[cmi,dmi,mmi,cmo,dmo,mmo,mmio]=(G,K);

First consider the margins at the input to the plant. The first input
channel has infinite gain margin and 90 degrees of phase margin based
on the results from the allmargin command, smi(1). The disk margin
analysis, dmi, of the first channel provides similar results.

cmi(1)
ans =

GMFrequency: [1x0 double]
GainMargin: [1x0 double]

PMFrequency: 21
PhaseMargin: 90
DMFrequency: 21
DelayMargin: 0.0748

Stable: 1
dmi(1)
ans =

GainMargin: [0 Inf]
PhaseMargin: [-90 90]

Frequency: 1.1168

The second input channel has a gain margin of 2.105 and infinite
phase margin based on the single-loop analysis, cmi(2). The disk
margin analysis, dmi(2), which allows for simultaneous gain and phase
variations a loop-at-a-time results in maximum gain margin variations
of 0.475 and 2.105 and phase margin variations of +/- 39.18 degs.

cmi(2)
ans =

GMFrequency: 0
GainMargin: 2.1053
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PMFrequency: [1x0 double]
PhaseMargin: [1x0 double]
DMFrequency: [1x0 double]
DelayMargin: [1x0 double]

Stable: 1
dmi(2)
ans =

GainMargin: [0.4749 2.1056]
PhaseMargin: [-39.1912 39.1912]

Frequency: 0.0200

The multiple margin analysis of the plant inputs corresponds to
allowing simultaneous, independent gain and phase margin variations
in each channel. Allowing independent variation of the input channels
further reduces the tolerance of the closed-loop system to variations
at the input to the plant. The multivariable margin analysis, mmi,
leads to a maximum allowable gain margin variation of 0.728 and
1.373 and phase margin variations of +/- 17.87 deg. Hence even though
the first channel had infinite gain margin and 90 degrees of phase
margin, allowing variation in both input channels leads to a factor of
two reduction in the gain and phase margin.

mmi
mmi =

GainMargin: [0.7283 1.3730]
PhaseMargin: [-17.8659 17.8659]

Frequency: 9.5238e-004

The guaranteed region of phase and gain variations for the closed-loop
system can be illustrated graphically. The disk margin analysis,
dmi(2), indicates the closed-loop system will remain stable for
simultaneous gain variations of 0.475 and 2.105 (± 6.465 dB) and phase
margin variations of ± 39.18 deg in the second input channel. This is
denoted by the region associated with the large ellipse in the following
figure. The multivariable margin analysis at the input to the plant, mmi,
indicates that the closed-loop system will be stable for independent,
simultaneous, gain margin variation up to 0.728 and 1.373 (±2.753 dB)
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and phase margin variations up to ± 17.87 deg (the dark ellipse region)
in both input channels.

The output channels have single-loop margins of infinite gain and 90
deg phase variation. The output multivariable margin analysis, mmo,
leads to a maximum allowable gain margin variation of 0.607 and 1.649
and phase margin variations of +/- 27.53 degs. Hence even though both
output channels had infinite gain margin and 90 degrees of phase
margin, simultaneous variations in both channels significantly reduce
the margins at the plant outputs.

mmo
mmo =

GainMargin: [0.6065 1.6489]
PhaseMargin: [-27.5293 27.5293]

Frequency: 0.2287
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If all the input and output channels are allow to vary independently,
mmio, the gain margin variation allow are 0.827 and 1.210 and phase
margin variations allowed are +/- 10.84 deg.

mmio
mmio =

GainMargin: [0.8267 1.2097]
PhaseMargin: [-10.8402 10.8402]

Frequency: 0.2287

Algorithms Two well-known loop robustness measures are based on the sensitivity
function S=(I–L)–1 and the complementary sensitivity function
T=L(I–L)–1 where L is the loop gain matrix associated with the input or
output loops broken simultaneously. In the following figure, S is the
transfer matrix from summing junction input u to summing junction
output e. T is the transfer matrix from u to y. If signals e and y are
summed, the transfer matrix from u to e+y is given by (I+L)· (I–L)–1, the
balanced sensitivity function. It can be shown (Dailey, 1991, Blight,
Daily and Gangass, 1994) that each broken-loop gain can be perturbed
by the complex gain (1+Δ)(1–Δ) where |Δ|<1/µ(S+T) or |Δ|<1/σmax(S+T)
at each frequency without causing instability at that frequency. The
peak value of µ(S+T) or σmax(S+T) gives a robustness guarantee for all
frequencies, and for µ(S+T) the guarantee is nonconservative (Blight,
Daily and Gangass, 1994).

This figure shows a comparison of a disk margin analysis with the
classical notations of gain and phase margins.
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The Nyquist plot is of the loop transfer function L(s)
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• The Nyquist plot of L corresponds to the blue line.

• The unit disk corresponds to the dotted red line.

• GM and PM indicate the location of the classical gain and phase
margins for the system L.
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• DGM and DPM correspond to the disk gain and phase margins. The
disk margins provide a lower bound on classical gain and phase
margins.

• The disk margin circle corresponds to the dashed black line. The
disk margin corresponds to the largest disk centered at (GMD +
1/GMD)/2 that just touches the loop transfer function L. This location
is indicated by the red dot.

The disk margin and multiple channel margins calculation involve the
balanced sensitivity function S+T. For a given peak value of µ(S+T),
any simultaneous phase and gain variations applied to each loop
independently will not destabilize the system if the perturbations
remain inside the corresponding circle or disk. This corresponds to the
disk margin calculation to find dmi and dmo.

Similarly, the multiple channel margins calculation involves the
balanced sensitivity function S+T. Instead of calculating µ(S+T) a
single loop at a time, all the channels are included in the analysis. A
µ- analysis problem is formulated with each channel perturbed by an
independent, complex perturbation. The peak µ(S+T) value guarantees
that any simultaneous, independent phase and gain variations applied
to each loop simultaneously will not destabilize the system if they
remain inside the corresponding circle or disk of size µ(S+T).

References Barrett, M.F., Conservatism with robustness tests for linear feedback
control systems, Ph.D. Thesis, Control Science and Dynamical Systems,
University of Minnesota, 1980.

Blight, J.D., R.L. Dailey, and D. Gangsass, “Practical control law design
for aircraft using multivariable techniques,” International Journal of
Control, Vol. 59, No. 1, 1994, pp. 93-137.

Bates, D., and I. Postlethwaite, “Robust Multivariable Control of
Aerospace Systems,” Delft University Press, Delft, The Netherlands,
ISBN: 90-407-2317-6, 2002.

See Also allmargin | bode | loopsens | mussv | robuststab | wcgain |
wcsens | wcmargin
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Purpose Sensitivity functions of plant-controller feedback loop

Syntax loops = loopsens(P,C)

Description loops = loopsens(P,C) creates a struct, loops, whose fields contain
the multivariable sensitivity, complementary and open-loop transfer
functions. The closed-loop system consists of the controller C in negative
feedback with the plant P. C should only be the compensator in the
feedback path, not any reference channels, if it is a 2-Dof controller as
seen in the figure below. The plant and compensator P and C can be
constant matrices, double, lti objects, frd/ss/tf/zpk, or uncertain
objects umat/ufrd/uss.

The loops returned variable is a structure with fields:

Field Description

Poles Closed-loop poles. NaN for frd/ufrd objects

Stable 1 if nominal closed loop is stable, 0 otherwise. NaN for
frd/ufrd objects

Si Input-to-plant sensitivity function

Ti Input-to-plant complementary sensitivity function

Li Input-to-plant loop transfer function

So Output-to-plant sensitivity function

To Output-to-plant complementary sensitivity function

Lo Output-to-plant loop transfer function
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Field Description

PSi Plant times input-to-plant sensitivity function

CSo Compensator times output-to-plant sensitivity
function

The multivariable closed-loop interconnection structure, shown below,
defines the input/output sensitivity, complementary sensitivity, and
loop transfer functions.

Description Equation

Input sensitivity TFe d1 1←( )
(I + CP)–1

Input complementary sensitivity TFe d2 1←( )
CP(I + CP)–1

Output sensitivity TFe d3 2←( )
(I + PC)–1

Output complementary sensitivity −( )←TFe d4

PC(I + PC)–1

Input loop transfer function CP

Output loop transfer function PC
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Examples Single Input, Single Output (SISO)

Consider PI controller for a dominantly 1st-order plant, with the
closed-loop bandwidth of 2.5 rads/sec. Since the problem is SISO, all
gains are the same at input and output.

gamma = 2; tau = 1.5; taufast = 0.1;
P = tf(gamma,[tau 1])*tf(1,[taufast 1]);
tauclp = 0.4;
xiclp = 0.8;
wnclp = 1/(tauclp*xiclp);
KP = (2*xiclp*wnclp*tau - 1)/gamma;
KI = wnclp^2*tau/gamma;
C = tf([KP KI],[1 0]);

Form the closed-loop (and open-loop) systems with loopsens, and plot
Bode plots using the gains at the plant input.

loops = loopsens(P,C);
bode(loops.Si,'r',loops.Ti,'b',loops.Li,'g')
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Finally, compare the open-loop plant gain to the closed-loop value of PSi

bodemag(P,'r',loops.PSi,'b')
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Multi Input, Multi Output (MIMO)

Consider an integral controller for a constant-gain, 2-input, 2-output
plant. For purposes of illustration, the controller is designed via
inversion, with different bandwidths in each rotated channel.

P = ss([2 3;-1 1]);
BW = diag([2 5]);
[U,S,V] = svd(P.d); % get SVD of Plant Gain
Csvd = V*inv(S)*BW*tf(1,[1 0])*U'; % inversion based on SVD
loops = loopsens(P,Csvd);
bode(loops.So,'g',loops.To,'r.',logspace(-1,3,120))
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See Also loopmargin | robuststab | wcsens | wcmargin
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Purpose H∞ optimal controller synthesis for LTI plant

Syntax [K,CL,GAM,INFO]=loopsyn(G,Gd)
[K,CL,GAM,INFO]=loopsyn(G,Gd,RANGE)

Description loopsyn is an H∞ optimal method for loopshaping control synthesis. It
computes a stabilizing H∞controller K for plant G to shape the sigma
plot of the loop transfer function GK to have desired loop shape Gd with
accuracy γ = GAM in the sense that if ω0 is the 0 db crossover frequency
of the sigma plot of Gd(jω), then, roughly,

σ ω ω
γ

σ ω ω ωG j K j G jd( ) ( ) ( )( ) ≥ ( ) >1
0  for all 

(3-14)

σ ω ω γ σ ω ω ωG j K j G jd( ) ( ) ( )( ) ≤ ( ) >  for all 0 (3-15)

The STRUCT array INFO returns additional design information,
including a MIMO stable min-phase shaping pre-filter W, the shaped
plant Gs = GW, the controller for the shaped plant Ks = WK, as well as
the frequency range {ωmin,ωmax} over which the loop shaping is achieved

Input
Argument

Description

G LTI plant

Gd Desired loop-shape (LTI model)

RANGE (optional, default {0,Inf}) Desired frequency range
for loop-shaping, a 1-by-2 cell array {ωmin,ωmax}; ωmax
should be at least ten times ωmin
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Output
Argument

Description

K LTI controller

CL=
G*K/(I+GK)

LTI closed-loop system

GAM Loop-shaping accuracy (GAM ≥ 1, with GAM=1 being
perfect fit

INFO Additional output information

INFO.W LTI pre-filter W satisfying σ(Gd) = σ (GW) for all ω;

W is always minimum-phase.

INFO.Gs LTI shaped plant: Gs = GW.

INFO.Ks LTI controller for the shaped plant: Ks = WK.

INFO.range {ωmin,ωmax} cell-array containing the approximate
frequency range over which loop-shaping could be
accurately achieved to with accuracy G. The output
INFO.range is either the same as or a subset of the
input range.

Algorithms Using the GCD formula of Le and Safonov [1], loopsyn first computes
a stable-minimum-phase loop-shaping, squaring-down prefilter W such
that the shaped plant Gs = GW is square, and the desired shape Gd is
achieved with good accuracy in the frequency range {ωmin,ωmax} by the
shaped plant; i.e.,

σ(Gd) ≈ σ(Gs) for all ω {ωmin,ωmax}.

Then, loopsyn uses the Glover-McFarlane [2] normalized-coprime-factor
control synthesis theory to compute an optimal “loop-shaping” controller
for the shaped plant via Ks=ncfsyn(Gs), and returns K=W*Ks.

If the plant G is a continuous time LTI and
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1 G has a full-rank D-matrix, and

2 no finite zeros on the jω-axis, and

3 {ωmin,ωmax}=[0,∞],

then GW theoretically achieves a perfect accuracy fit σ(Gd) = σ(GW)
for all frequency ω. Otherwise, loopsyn uses a bilinear pole-shifting
bilinear transform [3] of the form

Gshifted=bilin(G,-1,'S_Tust',[ømin,ømax]),

which results in a perfect fit for transformed Gshifted and an
approximate fit over the smaller frequency range [ωmin,ωmax] for the
original unshifted G provided that ωmax >> ωmin. For best results, you
should choose ωmax to be at least 100 times greater than ωmin. In some
cases, the computation of the optimal W for Gshifted may be singular
or ill-conditioned for the range [ωmin,ωmax], as when Gshifted has
undamped zeros or, in the continuous-time case only, Gshifted has a
D-matrix that is rank-deficient); in such cases, loopsyn automatically
reduces the frequency range further, and returns the reduced range
[ωmin,ωmax] as a cell array in the output INFO.range={ωmin,ωmax}

Examples The following code generates the optimal loopsyn loopshaping control
for the case of a 5-state, 4-output, 5-input plant with a full-rank
non-minimum phase zero at s = +10. The result is shown in LOOPSYN
controller on page 3-200.

rand('seed',0);randn('seed',0);
s=tf('s'); w0=5; Gd=5/s; % desired bandwith w0=5
G=((s-10)/(s+100))*rss(3,4,5); % 4-by-5 non-min-phase plant
[K,CL,GAM,INFO]=loopsyn(G,Gd);
sigma(G*K,'r',Gd*GAM,'k-.',Gd/GAM,'k-.',{.1,100}) % plot result

This figure shows that the LOOPSYN controller K optimally fits

sigma(G*K) = sigma(Gd)–GAM % dB
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In the above example, GAM = 2.0423 = 6.2026 dB.

LOOPSYN controller

The loopsyn controller K optimally fits sigma(G*K). As shown in the
preceding figure, it is sandwiched between sigma(Gd/GAM)

and sigma(Gd*GAM) in accordance with the inequalities in Equation
3-14 and Equation 3-15. In this example, GAM = 2.0423 = 6.2026 db.

Limitations The plant G must be stabilizable and detectable, must have at least as
many inputs as outputs, and must be full rank; i.e,

• size(G,2) ≥ size(G,1)

• rank(freqresp(G,w)) = size(G,1) for some frequency w.

The order of the controller K can be large. Generically, when Gd is given
as a SISO LTI, then the order NK of the controller K satisfies
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NK = NGs + NW

= NyNGd + NRHP + NW

= NyNGd + NRHP + NG

where

• Ny denotes the number of outputs of the plant G.

• NRHP denotes the total number of nonstable poles and
nonminimum-phase zeros of the plant G, including those on the
stability boundary and at infinity.

• NG, NGs, NGd and NW denote the respective orders of G, Gs, Gd and W.

Model reduction can help reduce the order of K— see reduce and ncfmr.

References [1] Le, V.X., and M.G. Safonov. Rational matrix GCD’s and the design
of squaring-down compensators—a state space theory. IEEE Trans.
Autom.Control, AC-36(3):384–392, March 1992.

[2] Glover, K., and D. McFarlane. Robust stabilization of normalized
coprime factor plant descriptions with H∞-bounded uncertainty. IEEE
Trans. Autom. Control, AC-34(8):821–830, August 1992.

[3] Chiang, R.Y., and M.G. Safonov. H∞ synthesis using a bilinear
pole-shifting transform. AIAA J. Guidance, Control and Dynamics,
15(5):1111–1115, September–October 1992.

See Also mixsyn | ncfsyn

How To • Loop Shaping of HIMAT Pitch Axis Controller
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Purpose Tune MIMO control systems

Syntax [G,C,gam] = looptune(G0,C0,wc)
[G,C,gam] = looptune(G0,C0,wc,Req1,Req2,...)
[G,C,gam] = looptune(...,options)
[G,C,gam,info] = looptune(...)

Description [G,C,gam] = looptune(G0,C0,wc) tunes the feedback loop

�

�

� �

to meet the following default requirements:

• Bandwidth — Gain crossover for each loop falls in the frequency
interval wc

• Performance — Integral action at frequencies below wc

• Robustness — Adequate stability margins and gain roll-off at
frequencies above wc

The tunable genss model C0 specifies the controller structure,
parameters, and initial values. The model G0 specifies the plant. G0
can be a Numeric LTI model, or, for co-tuning the plant and controller,
a tunable genss model. The sensor signals y (measurements) and
actuator signals u (controls) define the boundary between plant and
controller.

[G,C,gam] = looptune(G0,C0,wc,Req1,Req2,...) tunes the
feedback loop to meet additional design requirements specified in one or
more tuning goal objects Req. Omit wc to use the requirements specified
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in the Req objects instead of an explicit target crossover frequency and
the default performance and robustness requirements.

[G,C,gam] = looptune(...,options) specifies further options,
including target gain margin, target phase margin, and computational
options for the tuning algorithm.

[G,C,gam,info] = looptune(...) returns a structure info with
additional information about the tuned result. Use info with the
loopview command to visualize tuning constraints and validate the
tuned design.

Input
Arguments

G0

Numeric LTI model or tunable genss model representing plant in
control system to tune.

The plant is the portion of your control system whose outputs are
sensor signals (measurements) and whose inputs are actuator signals
(controls). Use connect to build G0 from individual numeric or tunable
components.

C0

Generalized LTI model representing controller. C0 specifies the
controller structure, parameters, and initial values.

The controller is the portion of your control system that receives
sensor signals (measurements) as inputs and produces actuator signals
(controls) as outputs. Use Control Design Blocks and Generalized LTI
models to represent tunable components of the controller. Use connect
to build C0 from individual numeric or tunable components.

wc

Vector specifying target crossover region [wcmin,wcmax]. The looptune
command attempts to tune all loops in the control system so that the
open-loop gain crosses 0 dB within the target crossover region.

A scalar wc specifies the target crossover region [wc/2,2*wc].
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Req

One or more TuningGoal objects specifying design requirements.
Available requirement types are:

• TuningGoal.Tracking— Setpoint tracking requirement

• TuningGoal.Gain— Limit on transfer function gain

• TuningGoal.LoopShape— Target shape for open-loop response

For a complete list of the design requirements you can specify, see
“Performance and Robustness Specifications for looptune”.

options

Set of options for looptune algorithm, specified using looptuneOptions.
See looptuneOptions for information about the available options,
including target gain margin and phase margin.

Output
Arguments

G

Tuned plant.

If G0 is a Numeric LTI model, G is the same as G0.

If G0 is a tunable genss model, G is a genss model with Control Design
Blocks of the same number and types as G0. The current value of G
is the tuned plant.

C

Tuned controller. C is a genss model with Control Design Blocks of
the same number and types as C0. The current value of C is the tuned
controller.

gam

Parameter indicating degree of success at meeting all tuning
constraints. A value of gam <= 1 indicates that all requirements are
satisfied. gam >> 1 indicates failure to meet at least one requirement.
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Use loopview to visualize the tuned result and identify the unsatisfied
requirement.

For best results, use the RandomStart option in looptuneOptions to
obtain several minimization runs. Setting RandomStart to an integer
N > 0 causes looptune to run the optimization N additional times,
beginning from parameter values it chooses randomly. You can examine
gam for each run to help identify an optimization result that meets your
design requirements.

info

Data for validating tuning results.

info is a structure containing the following tuning data:

• Optimal I/O scalings Di and Do. The scaled plant is given by Do\G*Di.

• Requirement parameters and weighting functions.

To use the data in info, use the command loopview(G,C,info)
to visualize tuning constraints and validate the tuned design. See
loopview for more information.

Examples Tune the control system of the following illustration, to achieve
crossover between 0.1 and 1 rad/min.

���

���

� �� !

�
�

��

��

��

��

�

�

The 2-by-2 plant G is represented by:
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The fixed-structure controller, C, includes three components: the 2-by-2
decoupling matrix D and two PI controllers PI_L and PI_V. The signals
r, y, and e are vector-valued signals of dimension 2.

s = tf('s');
G = 1/(75*s+1)*[87.8 -86.4; 108.2 -109.6];
G.TimeUnit = 'minutes';

D = ltiblock.gain('Decoupler',eye(2));
PI_L = ltiblock.pid('PI_L','pi'); PI_L.TimeUnit = 'minutes';
PI_V = ltiblock.pid('PI_V','pi'); PI_V.TimeUnit = 'minutes';
C0 = blkdiag(PI_L,PI_V)*D;

wc = [0.1,1];
options = looptuneOptions('RandomStart',5);
[G,C,gam,info] = looptune(-G,C0,wc,options);

The minus sign on the plant input to looptune accounts for the negative
feedback in the control loop. C is the tuned controller, in this case a
genss model with the same block types as C0.

You can examine the tuned result using loopview.

Algorithms looptune automatically converts target bandwidth, performance
requirements, and additional design requirements into weighting
functions that express the requirements as an H∞ optimization problem.
looptune then uses systune to optimize tunable parameters to
minimize the H∞ norm. For more information about the optimization
algorithms, see [1].

looptune computes the H∞ norm using the algorithm of [2] and
structure-preserving eigensolvers from the SLICOT library. For more
information about the SLICOT library, see http://slicot.org.
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References [1] P. Apkarian and D. Noll, "Nonsmooth H-infinity Synthesis." IEEE
Transactions on Automatic Control, Vol. 51, Number 1, 2006, pp. 71–86.

[2] Bruisma, N.A. and M. Steinbuch, "A Fast Algorithm to Compute the
H∞-Norm of a Transfer Function Matrix," System Control Letters, 14
(1990), pp. 287-293.

Alternatives For tuning Simulink models with looptune, see slTunable and
slTunable.looptune (requires Simulink Control Design).

See Also TuningGoal.Tracking | slTunable | systune | slTunable.looptune
| TuningGoal.Gain | TuningGoal.LoopShape | hinfstruct |
looptuneOptions | loopview | loopmargin | genss | connect

Tutorials • “Tune a MIMO Control System for a Specified Bandwidth”

• “Tuning Feedback Loops with LOOPTUNE”

• “Decoupling Controller for a Distillation Column”

How To • “Performance and Robustness Specifications for looptune”
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Purpose Set options for looptune

Syntax options = looptuneOptions
options = looptuneOptions(Name,Value)

Description options = looptuneOptions returns the default option set for the
looptune command.

options = looptuneOptions(Name,Value) creates an option set with
the options specified by one or more Name,Value pair arguments.

Input
Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

looptuneOptions takes the following Name arguments:

GainMargin

Target gain margin in decibels. GainMargin specifies the required gain
margin for the tuned control system. For MIMO control systems, the
gain margin is the multiloop disk margin. See loopmargin for the
definition of the multiloop disk margin.

Default: 7.6 dB

PhaseMargin

Target phase margin in degrees. PhaseMargin specifies the required
phase margin for the tuned control system. For MIMO control systems,
the phase margin is the multiloop disk margin. See loopmargin for the
definition of the multiloop disk margin.

Default: 45 degrees
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Display

String determining the amount of information to display during
looptune runs.

Display takes the following values:

• 'off' — Run in silent mode, displaying no information during or
after the run.

• 'iter' — Display optimization progress after each iteration. The
display includes the value of the objective parameter gam after each
iteration. The display also includes a Progress value, indicating the
percent change in gam from the previous iteration.

• 'final' — Display a one-line summary at the end of each
optimization run. The display includes the minimized value of gam
and the number of iterations for each run.

Default: 'final'

MaxIter

Maximum number of iterations in each optimization run.

Default: 300

RandomStart

Number of additional optimizations starting from random values of the
free parameters in the controller.

If RandomStart = 0, looptune performs a single optimization run
starting from the initial values of the tunable parameters. Setting
RandomStart = N > 0 runs N additional optimizations starting from N
randomly generated parameter values.

looptune tunes by finding a local minimum of a gain minimization
problem. To increase the likelihood of finding parameter values that
meet your design requirements, set RandomStart > 0. You can then
use the best design that results from the multiple optimization runs.
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Use with UseParallel = true to distribute independent optimization
runs among MATLAB workers (requires Parallel Computing Toolbox
software).

Default: 0

UseParallel

Parallel processing flag.

Set to true to enable parallel processing by distributing randomized
starts among MATLAB workers. Independent optimization runs
are performed concurrently. (Requires Parallel Computing Toolbox
software.)

Default: false

TargetGain

Target value for the objective parameter gam.

The looptune command converts your design requirements into
normalized gain constraints. The command then tunes the free
parameters of the control system to drive the objective parameter gam
below 1 to enforce all requirements.

The default TargetGain = 1 ensures that the optimization stops as
soon as gam falls below 1. Set TargetGain to a smaller or larger value to
continue the optimization or start sooner, respectively.

Default: 1

TolGain

Relative tolerance for termination.

The optimization terminates when the objective parameter gam
decreases by less than TolGain over 10 consecutive iterations.
Increasing TolGain speeds up termination, and decreasing TolGain
yields tighter final values.
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Default: 0.001

MaxFrequency

Maximum closed-loop natural frequency.

Setting MaxFrequency constrains the closed-loop poles to satisfy
|p| < MaxFrequency.

To allow looptune to choose the closed-loop poles automatically, based
upon the system’s open-loop dynamics, set MaxFrequency = Inf. To
prevent unwanted fast dynamics or high-gain control, set MaxFrequency
to a finite value.

Specify MaxFrequency in units of 1/TimeUnit, relative to the TimeUnit
property of the system you are tuning.

Default: Inf

MinDecay

Minimum decay rate for closed-loop poles

Constrains the closed-loop poles to satisfy Re(p) < -MinDecay.
Increase this value to improve the stability of closed-loop poles that do
not affect the closed-loop gain due to pole/zero cancellations.

Specify MinDecay in units of 1/TimeUnit, relative to the TimeUnit
property of the system you are tuning.

Default: 1e-7

Output
Arguments

options

Option set containing the specified options for the looptune command.

Examples Create Options Set for looptune

Create an options set for a looptune run using three random restarts.
Also, set the target gain and phase margins to 6 dB and 50 degrees,
respectively, and limit the closed-loop pole magnitude to 100.
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options = looptuneOptions('RandomStart',3','GainMargin',6,...
'PhaseMargin',50,'SpecRadius',100);

Alternatively, use dot notation to set the values of options.

options = looptuneOptions;
options.RandomStart = 3;
options.GainMargin = 6;
options.PhaseMargin = 50;
options.SpecRadius = 100;

Configure Option Set for Parallel Optimization Runs

Configure an option set for a looptune run using 20 random restarts,
running these independent optimization runs concurrently on multiple
MATLAB workers.

If you have the Parallel Computing Toolbox software installed, you can
use parallel computing to speed up looptune tuning of fixed-structure
control systems. When you run multiple randomized looptune
optimization starts, parallel computing speeds up tuning by distributing
the optimization runs among MATLAB workers.

Start a worker pool of MATLAB sessions using the Parallel Computing
Toolbox command matlabpool. For example:

matlabpool('open')

Create a looptuneOptions set that specifies 20 random restarts to
run in parallel.

options = looptuneOptions('RandomStart',20,'UseParallel',true);

Setting UseParallel to true enables parallel processing by distributing
the randomized starts among available MATLAB workers in the pool.

Use the looptuneOptions set when you call looptune. For example, if
you have already created a plant model G0 and tunable controller C0,
the following command uses parallel computing to tune the control
system of G0 and C0 to the target crossoverwc.
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[G,C,gamma] = looptune(G0,C0,wc,options);

See Also | looptune | loopmargin
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Purpose Graphically analyze MIMO feedback loops

Syntax loopview(G,C)
loopview(G,C,info)

Description loopview(G,C) plots characteristics of the following positive-feedback,
multi-input, multi-output (MIMO) feedback loop with plant G and
controller C.

�

�

� �

Use loopview to analyze the performance of a tuned control system
you obtain using looptune.

loopview plots the singular values of:

• Open-loop frequency responses G*C and C*G

• Sensitivity function S = inv(1-G*C) and complementary sensitivity
T = 1-S

• Maximum (target), actual (tuned), and normalized MIMO
stability margins. loopview plots the multi-loop disk margin (see
loopmargin). Use this plot to verify that the stability margins of the
tuned system do not significantly exceed the target value.

For more information about singular values, see sigma.

loopview(G,C,info) uses the info structure returned by looptune.
This syntax also plots the target and tuned values of tuning constraints
imposed on the system. Additional plots include:
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• Singular values of the maximum allowed S and T. The curve marked
S/T Max shows the maximum allowed S on the low-frequency side of
the plot, and the maximum allowed T on the high-frequency side.
These curves are the constraints that looptune imposes on S and T to
enforce the target crossover range wc.

• Target and tuned values of constraints imposed by any tuning goal
requirements you used with looptune.

Use loopview with the info structure to assist in troubleshooting
when tuning fails to meet all requirements.

Input
Arguments

G

Numeric LTI model or tunable genss model representing the plant in
a control system. The plant is the portion of a control system whose
outputs are sensor signals (measurements), and whose inputs are
actuator signals (controls).

You can obtain G as an output argument from looptune when you tune
your control system.

C

genss model representing the controller in a control system. The
controller is the portion of your control system that receives sensor
signals (measurements) as inputs and produces actuator signals
(controls) as outputs.

You can obtain C as an output argument from looptune when you tune
your control system.

info

info structure returned by looptune during control system tuning.

Examples Tune a control system, and use loopview to examine the performance
of the tuned controller.

s = tf('s');
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G = 1/(75*s+1)*[87.8 -86.4; 108.2 -109.6];
G.InputName = {'qL','qV'};
G.OutputName = 'y';

D = ltiblock.gain('Decoupler',eye(2));
PI_L = ltiblock.pid('PI_L','pi');
PI_L.OutputName = 'qL';
PI_V = ltiblock.pid('PI_V','pi');
PI_V.OutputName = 'qV';

sum = sumblk('e = r - y',2);
C0 = (blkdiag(PI_L,PI_V)*D)*sum;

wc = [0.1,1];
options = looptuneOptions('RandomStart',5);
[G,C,gam,info] = looptune(-G,C0,wc,options);

loopview(G,C,info)
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The first plot shows that the open-loop gain crossovers fall close to
the specified interval [0.1,1]. This plot also includes the maximum
and tuned values of the sensitivity function S = inv(1-G*C) and
complementary sensitivity T = 1-S. The curve marked S/T Max shows
the maximum allowed S on the low-frequency side of the plot, and the
maximum allowed T on the high-frequency side. These curves are the
constraints that looptune imposes on S and T to enforce the target
crossover range wc.
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The second plot shows that the MIMO stability margins of the tuned
system (blue curve) do not significantly exceed the upper limit (yellow
curve).

Alternatives For analyzing Simulink models tuned with slTunable.looptune, use
slTunable.loopview (requires Simulink Control Design).

See Also looptune | slTunable.looptune | slTunable.loopview

Tutorials • “Tune a MIMO Control System for a Specified Bandwidth”

• “Decoupling Controller for a Distillation Column”
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Purpose Compute uncertain system bounding given LTI ss array

Note ltiarray2uss will be removed in a future release. Use ucover
instead.

Syntax usys = ltiarray2uss(P,Parray,ord)

[usys,wt] = ltiarray2uss(P,Parray,ord)

[usys,wt,diffdata] = ltiarray2uss(P,Parray,ord)

[usys,wt,diffdata] = ltiarray2uss(P,Parray,ord,'InputMult')

[usys,wt,diffdata] =
ltiarray2uss(P,Parray,ord,'OutputMult')

[usys,wt,diffdata] = ltiarray2uss(P,Parray,ord,'Additive')

Description The command ltiarray2uss, calculates an uncertain system usys with
nominal value P, and whose range of behavior includes the given array
of systems, Parray.

usys = ltiarray2uss(P,Parray,ord), usys is formulated as an
input multiplicative uncertainty model,

usys = P*(I + wt*ultidyn('IMult',[size(P,2) size(P,2)])),
where wt is a stable scalar system, whose magnitude overbounds
the relative difference, (P - Parray)/P. The state order of the
weighting function used to bound the multiplicative difference between
P and Parray is ord. Both P and Parray must be in the classes
ss/tf/zpk/frd. If P is an frd then usys will be a ufrd object, otherwise
usys will be a uss object. The ultidyn atom is named based on the
variable name of Parray in the calling workspace.

[usys,wt] = ltiarray2uss(P,Parray,ord), returns the weight wt
used to bound the infinity norm of ((P - Parray)/P).

3-219



ltiarray2uss

[usys,wt] = ltiarray2uss(P,Parray,ord,'OutputMult'), uses
multiplicative uncertainty at the plant output (as opposed to input
multiplicative uncertainty). The formula for usys is

usys = (I + wt*ultidyn('Name',[size(P,1) size(P,1)])*P).

[usys,wt] = ltiarray2uss(P,Parray,ord,'Additive'), uses
additive uncertainty.

usys = P + wt*ultidyn('Name',[size(P,1) size(P,2)]). wt is a
frequency domain overbound of the infinity norm of (Parray - P).

[usys,wt] = ltiarray2uss(P,Parray,ord,'InputMult'), uses
multiplicative uncertainty at the plant input (this is the default). The
formula for usys is usys = P*(I + wt*ultidyn('Name',[size(P,2)
size(P,2)])).

[usys,wt,diffdata] = ltiarray2uss(P,Parray,ord,type) returns
the norm of the difference (absolute difference for additive, and relative
difference for multiplicative uncertainty) between the nominal model P
and Parray. wt satisfies diffdata(w_i) < |wt(w_i)| at all frequency
points.

Examples See First-Cut Robust Design for a more detailed example of how to
use ltiarray2uss.

Consider a third order transfer function with an uncertain gain, filter
time constant and a lightly damped flexible mode. This model is used to
represent a physical system from frequency response data is acquired.

gain = ureal('gain',10,'Perc',20);
tau = ureal('tau',.6,'Range',[.42 .9]);
wn = 40;
zeta = 0.1;
usys = tf(gain,[tau 1])*tf(wn^2,[1 2*zeta*wn wn^2]);
sysnom = usys.NominalValue;
parray = usample(usys,30);
om = logspace(-1,2,80);
parrayg = frd(parray,om);
bode(parrayg)
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The frequency response data in parray represents 30 experiments
performed on the system. The command ltiarray2uss is used to
generate an uncertain model, umod, based on the frequency response
data. Initially an input multiplicative uncertain model is used to
characterize the collection of 30 frequency responses. First and second
order input multiplicative uncertainty weight are calculated from the
data.

[umodIn1,wtIn1,diffdataIn] = ltiarray2uss(sysnom,parrayg,1);
[umodIn2,wtIn2,diffdataIn] = ltiarray2uss(sysnom,parrayg,2);
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bodemag(wtIn1,'b-',wtIn2,'g+',diffdataIn,'r.',om)

Alternatively, an additive uncertain model is used to characterize the
collection of 30 frequency responses.

[umodAdd1,wtAdd1,diffdataAdd] =
ltiarray2uss(sysnom,parrayg,1,'Additive');
[umodAdd2,wtAdd2,diffdataAdd] =
ltiarray2uss(sysnom,parrayg,2,'Additive');
bodemag(wtAdd1,'b-',wtAdd2,'g+',diffdataAdd,'r.',om)
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See Also fitmagfrd | ultidyn | uss
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Purpose LQG loop transfer-function recovery (LTR) control synthesis

Syntax [K,SVL,W1] = ltrsyn(G,F,XI,THETA,RHO)
[K,SVL,W1] = ltrsyn(G,F,XI,THETA,RHO,W)
[K,SVL,W1] = ltrsyn(G,F,XI,THETA,RHO,OPT)
[K,SVL,W1] = ltrsyn(G,F,XI,THETA,RHO,W,OPT)

Description [K,SVL,W1] = ltrsyn(G,F,XI,TH,RHO) computes a
reconstructed-state output-feedback controller K for LTI
plant G so that K*G asymptotically recovers plant-input full-state
feedback loop transfer function L(s) = F(Is–A)–1B+D; that is, at any
frequency w>0, max(sigma(K*G-L, w))→0 as ρ→ ∞, where L=
ss(A,B,F,D) is the LTI full-state feedback loop transfer function.

[K,SVL,W1] = ltrsyn(G,F1,Q,R,RHO,'OUTPUT') computes the
solution to the ‘dual’ problem of filter loop recovery for LTI plant G where
F is a Kalman filter gain matrix. In this case, the recovery is at the
plant output, and max(sigma(G*K-L, w))→0 as ρ→∞, where L1 denotes
the LTI filter loop feedback loop transfer function L1= ss(A,F,C,D).

Only the LTI controller K for the final value RHO(end)is returned.

Inputs

G LTI plant

F LQ full-state-feedback gain matrix

XI plant noise intensity,

or, if OPT='OUTPUT' state-cost matrix XI=Q,

THETA sensor noise intensity

or, if OPT='OUTPUT' control-cost matrix THETA=R,

RHO vector containing a set of recovery gains

W (optional) vector of frequencies (to be used for plots);
if input W is not supplied, then a reasonable default
is used
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Outputs

K K(s) — LTI LTR (loop-transfer-recovery)
output-feedback, for the last element of RHO (i.e.,
RHO(end))

SVL sigma plot data for the recovered loop transfer function
if G is MIMO or, for SISO G only, Nyquist loci SVL =
[re(1:nr) im(1:nr)]

W1 frequencies for SVL plots, same as W when present

Algorithms For each value in the vector RHO, [K,SVL,W1] =
ltrsyn(G,F,XI,THETA,RHO) computes the full-state-feedback
(default OPT='INPUT') LTR controller

K s K Is A BK K C K DK Kc c f f c f( ) ( )= − + + −⎡
⎣

⎤
⎦

−1

where Kc = F and Kf = lqr(A',C',XI+RHO(i)*B*B',THETA).
The “fictitious noise” term RHO(i)*B*B' results in loop-transfer
recovery as RHO(i) → ∞. The Kalman filter gain is

K Cf
T= ∑ −Θ 1 where Σ satisfies the Kalman filter Riccati equation

0 1= ∑ + ∑−∑ ∑+ +−A A C C BBT T TΘ Ξ ρ . See [1] for further details.

Similarly for the ’dual’ problem of filter loop recovery case, [K,SVL,W1]
= ltrsyn(G,F,Q,R,RHO,'OUTPUT') computes a filter loop recovery
controller of the same form, but with Kf = F is being the input
filter gain matrix and the control gain matrix Kc computed as Kc =
lqr(A,B,Q+RHO(i)*C'*C,R).
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Example of LQG/LTR at Plant Output.

Examples s=tf('s');G=ss(1e4/((s+1)*(s+10)*(s+100)));[A,B,C,D]=ssdata(G);
F=lqr(A,B,C'*C,eye(size(B,2)));
L=ss(A,B,F,0*F*B);
XI=100*C'*C; THETA=eye(size(C,1));
RHO=[1e3,1e6,1e9,1e12];W=logspace(-2,2);
nyquist(L,'k-.');hold;
[K,SVL,W1]=ltrsyn(G,F,XI,THETA,RHO,W);

See also ltrdemo

Limitations The ltrsyn procedure may fail for non-minimum phase plants. For
full-state LTR (default OPT='INPUT’), the plant should not have fewer
outputs than inputs. Conversely for filter LTR (when OPT='OUTPUT’),
the plant should not have fewer inputs than outputs. The plant must
be strictly proper, i.e., the D-matrix of the plant should be all zeros.
ltrsyn is only for continuous time plants (Ts==0)

References [1] Doyle, J., and G. Stein, “Multivariable Feedback Design: Concepts
for a Classical/Modern Synthesis,” IEEE Trans. on Automat. Contr.,
AC-26, pp. 4-16, 1981.
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See Also h2syn | hinfsyn | lqg | loopsyn | ncfsyn
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Purpose Number of matrix variables in system of LMIs

Syntax K = matnbr(lmisys)

Description matnbr returns the number K of matrix variables in the LMI problem
described by lmisys.

See Also decnbr | lmiinfo | decinfo
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Purpose Extract vector of decision variables from matrix variable values

Syntax decvec = mat2dec(lmisys,X1,X2,X3,...)

Description Given an LMI system lmisys with matrix variables X1, . . ., XK
and given values X1,...,Xk of X1, . . ., XK, mat2dec returns the
corresponding value decvec of the vector of decision variables. Recall
that the decision variables are the independent entries of the matrices
X1, . . ., XK and constitute the free scalar variables in the LMI problem.

This function is useful, for example, to initialize the LMI solvers mincx
or gevp. Given an initial guess for X1, . . ., XK, mat2dec forms the
corresponding vector of decision variables xinit.

An error occurs if the dimensions and structure of X1,...,Xk are
inconsistent with the description of X1, . . ., XK in lmisys.

Examples Consider an LMI system with two matrix variables X and Y such that

• X is a symmetric block diagonal with one 2-by-2 full block and one
2-by-2 scalar block.

• Y is a 2-by-3 rectangular matrix.

Particular instances of X and Y are

X Y0 0

1 3 0 0
3 1 0 0
0 0 5 0
0 0 0 5

1 2 3
4 5 6

=
−

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=
⎛

⎝
⎜

⎞

⎠
⎟,    

and the corresponding vector of decision variables is given by

decv = mat2dec(lmisys,X0,Y0)

decv'

ans =
1 3 -1 5 1 2 3 4 5 6
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Note that decv is of length 10 since Y has 6 free entries while X has 4
independent entries due to its structure. Use decinfo to obtain more
information about the decision variable distribution in X and Y.

See Also dec2mat | decinfo | decnbr
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Purpose Minimize linear objective under LMI constraints

Syntax [copt,xopt] = mincx(lmisys,c,options,xinit,target)

Description The function mincx solves the convex program

minimize  subject to c x N L x N M R x MT T T( ) ( )≤ (3-16)

where x denotes the vector of scalar decision variables.

The system of LMIs is described by lmisys. The vector c must be of the
same length as x. This length corresponds to the number of decision
variables returned by the function decnbr. For linear objectives
expressed in terms of the matrix variables, the adequate c vector is
easily derived with defcx.

The function mincx returns the global minimum copt for the objective
cTx, as well as the minimizing value xopt of the vector of decision
variables. The corresponding values of the matrix variables is derived
from xopt with dec2mat.

The remaining arguments are optional. The vector xinit is an initial
guess of the minimizer xopt. It is ignored when infeasible, but may
speed up computations otherwise. Note that xinit should be of the
same length as c. As for target, it sets some target for the objective
value. The code terminates as soon as this target is achieved, that is, as
soon as some feasible x such that cTx ≤ target is found. Set options to
[] to use xinit and target with the default options.

Control
Parameters

The optional argument options gives access to certain control
parameters of the optimization code. In mincx, this is a five-entry
vector organized as follows:

• options(1) sets the desired relative accuracy on the optimal value
lopt (default = 10–2).

• options(2) sets the maximum number of iterations allowed to be
performed by the optimization procedure (100 by default).
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• options(3) sets the feasibility radius. Its purpose and usage are as
for feasp.

• options(4) helps speed up termination. If set to an integer value J
> 0, the code terminates when the objective cTx has not decreased by
more than the desired relative accuracy during the last J iterations.

• options(5) = 1 turns off the trace of execution of the optimization
procedure. Resetting options(5) to zero (default value) turns it
back on.

Setting option(i) to zero is equivalent to setting the corresponding
control parameter to its default value. See feasp for more detail.

Tip for
Speed-Up

In LMI optimization, the computational overhead per iteration mostly
comes from solving a least-squares problem of the form

min
x

Ax b−

where x is the vector of decision variables. Two methods are used to
solve this problem: Cholesky factorization of ATA (default), and QR
factorization of A when the normal equation becomes ill conditioned
(when close to the solution typically). The message

* switching to QR

is displayed when the solver has to switch to the QR mode.

Since QR factorization is incrementally more expensive in most
problems, it is sometimes desirable to prevent switching to QR. This
is done by setting options(4) = 1. While not guaranteed to produce
the optimal value, this generally achieves a good trade-off between
speed and accuracy.

Memory
Problems

QR-based linear algebra (see above) is not only expensive in terms of
computational overhead, but also in terms of memory requirement. As
a result, the amount of memory required by QR may exceed your swap
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space for large problems with numerous LMI constraints. In such case,
MATLAB issues the error

??? Error using ==> pds
Out of memory. Type HELP MEMORY for your options.

You should then ask your system manager to increase your swap space
or, if no additional swap space is available, set options(4) = 1. This
will prevent switching to QR and mincx will terminate when Cholesky
fails due to numerical instabilities.

References The solver mincx implements Nesterov and Nemirovski’s Projective
Method as described in

Nesterov, Yu, and A. Nemirovski, Interior Point Polynomial Methods in
Convex Programming: Theory and Applications, SIAM, Philadelphia,
1994.

Nemirovski, A., and P. Gahinet, “The Projective Method for Solving
Linear Matrix Inequalities,” Proc. Amer. Contr. Conf., 1994, Baltimore,
Maryland, pp. 840-844.

The optimization is performed by the C-MEX file pds.mex.

See Also defcx | mincx | dec2mat | decnbr | feasp | gevp
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Purpose H∞ mixed-sensitivity synthesis method for robust control loopshaping
design

Syntax [K,CL,GAM,INFO]=mixsyn(G,W1,W2,W3)
[K,CL,GAM,INFO]=mixsyn(G,W1,W2,W3,KEY1,VALUE1,KEY2,VALUE2,...)

Description [K,CL,GAM,INFO]=mixsyn(G,W1,W2,W3) computes a controller K that
minimizes the H∞ norm of the closed-loop transfer function the weighted
mixed sensitivity

T
W S
W R
W T

y u1 1

1

2

1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

where S and T are called the sensitivity and complementary sensitivity,
respectively and S, R and T are given by

S I GK

R K I GK

T GK I GK

= +

= +

= +

−

−

−

( )

( )

( )

1

1

1
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Closed-loop transfer function Ty1u1 for mixed sensitivity mixsyn.

The returned values of S, R, and T satisfy the following loop shaping
inequalities:

σ ω γ σ ω

σ ω γ σ ω

σ ω γ

S j W j

R j W j

T j

( ) ( )

( ) ( )

( )

( ) ≤ ( )
( ) ≤ ( )
( ) ≤

−

−

  

  

  

1
1

2
1

σσ ωW j3
1−( )( )

where γ = GAM. Thus, W1, W3 determine the shapes of sensitivity S and
complementary sensitivity T. Typically, you would choose W1 to be
small inside the desired control bandwidth to achieve good disturbance
attenuation (i.e., performance), and choose W3 to be small outside the
control bandwidth, which helps to ensure good stability margin (i.e.,
robustness).

For dimensional compatibility, each of the three weights W1, W2 and W3
must be either empty, scalar (SISO) or have respective input dimensions
NY, NU, and NY where G is NY-by-NU. If one of the weights is not needed,
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you may simply assign an empty matrix []; e.g., P = AUGW(G,W1,[],W3)
is SYS but without the second row (without the row containing W2).

Algorithms [K,CL,GAM,INFO]=mixsyn(G,W1,W2,W3,KEY1,VALUE1,KEY2,VALUE2,...)

is equivalent to

[K,CL,GAM,INFO]=...
hinfsyn(augw(G,W1,W2,W3),KEY1,VALUE1,KEY2,VALUE2,...).

mixsyn accepts all the same key value pairs as hinfsyn.

Examples The following code illustrates the use of mixsyn for sensitivity and
complementary sensitivity ‘loop-shaping’.

s=zpk('s');
G=(s-1)/(s+1)^2;
W1=0.1*(s+100)/(100*s+1); W2=0.1;
[K,CL,GAM]=mixsyn(G,W1,W2,[]);
L=G*K; S=inv(1+L); T=1-S;
sigma(S,'g',T,'r',GAM/W1,'g-.',GAM*G/ss(W2),'r-.')
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mixsyn(G,W1,W2,[ ]) shapes sigma plots of S and T to conform to /W1
and G/W2, respectively.

Limitations The transfer functions G, W1, W2 and W3 must be proper, i.e., bounded
as s → ∞ or, in the discrete-time case, as z → ∞. Additionally, W1,
W2 and W3 should be stable. The plant G should be stabilizable and
detectable; else, P will not be stabilizable by any K.

See Also augw | hinfsyn
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Purpose Generate Bessel, Butterworth, Chebyshev, or RC filter

Syntax sys = mkfilter(fc,ord,type)
sys = mkfilter(fc,ord,type,psbndr)

Description sys = mkfilter(fc,ord,type) returns a single-input, single-output
analog low pass filter sys as an ss object. The cutoff frequency (Hertz)
is fc and the filter order is ord, a positive integer. The string variable
type specifies the type of filter and can be one of the following

String variable Description

'butterw' Butterworth filter

'cheby' Chebyshev filter

'bessel' Bessel filter

'rc' Series of resistor/capacitor filters

The dc gain of each filter (except even-order Chebyshev) is set to unity.

sys = mkfilter(fc,ord,type,psbndr) contains the input argument
psbndr that specifies the Chebyshev passband ripple (in dB). At
the cutoff frequency, the magnitude is -psbndr dB. For even-order
Chebyshev filters the DC gain is also -psbndr dB.

Examples butw = mkfilter(2,4,'butterw');
cheb = mkfilter(4,4,'cheby',0.5);
rc = mkfilter(1,4,'rc');
bode(butw_g,'-',cheb_g,'--',rc_g,'-.')
megend('Butterworth','Chebyshev','RC filter')
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Limitations The Bessel filters are calculated using the recursive polynomial formula.
This is poorly conditioned for high order filters (order > 8).

See Also augw

3-239



mktito

Purpose Partition LTI system into two-input/two-output system

Syntax SYS=mktito(SYS,NMEAS,NCONT)

Description SYS=mktito(SYS,NMEAS,NCONT) adds TITO (two-input/two-output)
partitioning to LTI system SYS, assigning OutputGroup and
InputGroup properties such that

Any preexisting OutputGroup or InputGroup properties of SYS are
overwritten. TITO partitioning simplifies syntax for control synthesis
functions like hinfsyn and h2syn.

Algorithms [r,c]=size(SYS);
set(SYS,'InputGroup', struct('U1',1:c-NCONT,'U2',c-NCONT+1:c));
set(SYS,'OutputGroup',struct('Y1',1:r-NMEAS,'Y2',r-NMEAS+1:r));

Examples You can type

P=rss(2,4,5); P=mktito(P,2,2);
disp(P.OutputGroup); disp(P.InputGroup);

to create a 4-by-5 LTI system P with OutputGroup and InputGroup
properties

U1: [1 2 3]
U2: [4 5]
Y1: [1 2]
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Y2: [3 4]

See Also augw | hinfsyn | h2syn | sdhinfsyn
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Purpose Modal form realization and projection

Syntax [G1,G2] = modreal(G,cut)

Description [G1,G2] = modreal(G,cut) returns a set of state-space LTI objects G1
and G2 in modal form given a state-space G and the model size of G1, cut.

The modal form realization has its A matrix in block diagonal form with
either 1x1 or 2x2 blocks. The real eigenvalues will be put in 1x1 blocks
and complex eigenvalues will be put in 2x2 blocks. These diagonal
blocks are ordered in ascending order based on eigenvalue magnitudes.

The complex eigenvalue a+bj is appearing as 2x2 block

a b
b a−

⎡

⎣
⎢

⎤

⎦
⎥

This table describes input arguments for modreal.

Argument Description

G LTI model to be reduced.

cut (Optional) an integer to split the realization. Without
it, a complete modal form realization is returned

This table lists output arguments.

Argument Description

G1,G2 LTI models in modal form

G can be stable or unstable. G1 = (A1, B1, C1, D1), G2 = (A2, B2, C2, D2)
and D1 = D + C2(–A2)

–1B2 is calculated such that the system DC gain is
preserved.

Algorithms Using a real eigen structure decomposition reig and ordering
the eigenvectors in ascending order according to their eigenvalue
magnitudes, we can form a similarity transformation out of these
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ordered real eigenvectors such that he resulting systems G1 and/or G2
are in block diagonal modal form.

Note This routine is extremely useful when model has jω-axis
singularities, e.g., rigid body dynamics. It has been incorporated
inside Hankel based model reduction routines - hankelmr, balancmr,
bstmr, and schurmr to isolate those jω-axis poles from the actual model
reduction process.

Examples Given a continuous stable or unstable system, G, the following
commands can get a set of modal form realizations depending on the
split index -- cut:

randn('state',1234); rand('state',5678);
G = rss(50,2,2);
[G1,G2] = modreal(G,2); % cut = 2 for two rigid body modes
G1.d = zeros(2,2); % remove the DC gain of the system from G1
sigma(G,G1,G2)

See Also reduce | balancmr | schurmr | bstmr | ncfmr | hankelmr | hankelsv
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Purpose Multi-model/multi-objective state-feedback synthesis

Syntax [gopt,h2opt,K,Pcl,X] = msfsyn(P,r,obj,region,tol)

Description Given an LTI plant P with state-space equations

x Ax B w B u
z C x D w D u
z C x D u

= + +
= + +
= +

⎧
⎨
⎪

⎩
⎪

∞

1 2

1 11 12

2 2 22

msfsyn computes a state-feedback control u = Kx that

• Maintains the RMS gain (H∞ norm) of the closed-loop transfer
function T∞ from w to z∞ below some prescribed value γ0 > 0

• Maintains the H2 norm of the closed-loop transfer function T2 from
w to z2 below some prescribed value υ0 > 0

• Minimizes an H2/H∞ trade-off criterion of the form

α βT T∞ ∞ +2
2 2

2

• Places the closed-loop poles inside the LMI region specified by region
(see lmireg for the specification of such regions). The default is the
open left-half plane.

Set r = size(d22) and obj = [γ0, ν0, α, β] to specify the problem
dimensions and the design parameters γ0, ν0, α, and β. You can perform
pure pole placement by setting obj = [0 0 0 0]. Note also that z∞
or z2 can be empty.

On output, gopt and h2opt are the guaranteed H∞ and H2 performances,
K is the optimal state-feedback gain, Pcl the closed-loop transfer

function from w to
z
z
∞⎛

⎝
⎜

⎞

⎠
⎟

2
, and X the corresponding Lyapunov matrix.

The function msfsyn is also applicable to multi-model problems where P
is a polytopic model of the plant:
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In this context, msfsyn seeks a state-feedback gain that robustly
enforces the specifications over the entire polytope of plants. Note
that polytopic plants should be defined with psys and that the
closed-loop system Pcl is itself polytopic in such problems. Affine
parameter-dependent plants are also accepted and automatically
converted to polytopic models.

See Also lmireg | psys
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Purpose Compute bounds on structured singular value (µ)

Syntax bounds = mussv(M,BlockStructure)
[bounds,muinfo] = mussv(M,BlockStructure)
[bounds,muinfo] = mussv(M,BlockStructure,Options)
[ubound,q] = mussv(M,F,BlockStructure)
[ubound,q] = mussv(M,F,BlockStructure,'s')

Description bounds = mussv(M,BlockStructure) calculates upper and lower
bounds on the structured singular value, or µ, for a given block
structure. M is a double, or frd object. If M is an N-D array (with N ≥ 3),
then the computation is performed pointwise along the third and higher
array dimensions. If M is a frd object, the computations are performed
pointwise in frequency (as well as any array dimensions).

BlockStructure is a matrix specifying the perturbation block structure.
BlockStructure has 2 columns, and as many rows as uncertainty
blocks in the perturbation structure. The i-th row of BlockStructure
defines the dimensions of the i’th perturbation block.

• If BlockStructure(i,:) = [-r 0], then the i-th block is an r-by-r
repeated, diagonal real scalar perturbation;

• if BlockStructure(i,:) = [r 0], then the i-th block is an r-by-r
repeated, diagonal complex scalar perturbation;

• if BlockStructure(i,:) = [r c], then the i-th block is an r-by-c
complex full-block perturbation.

• If BlockStructure is omitted, its default is ones(size(M,1),2),
which implies a perturbation structure of all 1-by-1 complex blocks.
In this case, if size(M,1) does not equal size(M,2), an error results.

If M is a two-dimensional matrix, then bounds is a 1-by-2 array
containing an upper (first column) and lower (second column) bound
of the structured singular value of M. For all matrices Delta with
block-diagonal structure defined by BlockStructure and with norm
less than 1/bounds(1) (upper bound), the matrix I - M*Delta is not
singular. Moreover, there is a matrix DeltaS with block-diagonal
structure defined by BlockStructure and with norm equal to
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1/bounds(2) (lower bound), for which the matrix I - M*DeltaS is
singular.

The format used in the 3rd output argument from lftdata is also
acceptable for describing the block structure.

If M is an frd, the computations are always performed pointwise in
frequency. The output argument bounds is a 1-by-2 frd of upper and
lower bounds at each frequency. Note that bounds.Frequency equals
M.Frequency.

If M is an N-D array (either double or frd), the upper and lower bounds
are computed pointwise along the 3rd and higher array dimensions
(as well as pointwise in frequency, for frd). For example, suppose
that size(M) is r×c×d1×...×dF. Then size(bounds) is 1×2×d1×...×dF.
Using single index notation, bounds(1,1,i) is the upper bound for
the structured singular value of M(:,:,i), and bounds(1,2,i) is the
lower bound for the structured singular value of M(:,:,i). Here, any i
between 1 and d1·d2...dF (the product of the dk) would be valid.

bounds = mussv(M,BlockStructure,Options) specifies computation
options. Options is a character string, containing any combination of
the following characters:

Option Meaning

'a' Upper bound to greatest accuracy, using LMI solver

'an' Same as 'a', but without automatic prescaling

'd' Display warnings

'f' Fast upper bound (typically not as tight as the default)

'g6' Use gain-based lower bound (note that the default
lower bound employs a power iteration) multiple times
(in this case 10+6*10 times). Larger numbers typically
give better lower bounds. This is an alternative to the
default lower bound which uses a power iteration.

'i' Reinitialize lower bound computation at each new
matrix (only relevant if M is ND array or frd)
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Option Meaning

'm7' Randomly reinitialize lower bound iteration multiple
times (in this case 7 times, use 1-9); larger number
typically gives better lower bound.

'o' Run “old” algorithms, from version 3.1.1 and
before. Included to allow exact replication of earlier
calculations.

's' Suppress progress information (silent).

'U' Upper-bound “only” (lower bound uses a fast/cheap
algorithm).

'x' Decrease iterations in lower bound computation (faster
but not as tight as default). Use 'U' for an even faster
lower bound.

[bounds,muinfo] = mussv(M,BlockStructure) returns muinfo, a
structure containing more detailed information. The information within
muinfo must be extracted using mussvextract. See mussvextract
for more details.

Generalized Structured Singular Value

ubound = mussv(M,F,BlockStructure) calculates an upper bound on
the generalized structured singular value (generalized µ) for a given
block structure. M is a double or frd object. M and BlockStructure are
as before. F is an additional (double or frd).

ubound = mussv(M,F,BlockStructure,'s') adds an option to run
silently. Other options are ignored for generalized µ problems.

Note that in generalized structured singular value computations, only an
upper bound is calculated. ubound is an upper bound of the generalized
structured singular value of the pair (M,F), with respect to the
block-diagonal uncertainty described by BlockStructure. Consequently
ubound is 1-by-1 (with additional array dependence, depending on M and
F). For all matrices Delta with block-diagonal structure defined by
BlockStructure and norm<1/ubound, the matrix [I-Delta*M;F] is
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guaranteed not to lose column rank. This is verified by the matrix Q,
which satisfies mussv(M+Q*F,BlockStructure,'a')<=ubound.

Examples See mussvextract for a detailed example of the structured singular
value.

A simple example for generalized structured singular value can be done
with random complex matrices, illustrating the relationship between
the upper bound for µ and generalized µ, as well as the fact that the
upper bound for generalized µ comes from an optimized µ upper bound.

M is a complex 5-by-5 matrix and F is a complex 2-by-5 matrix. The
block structure BlockStructure is an uncertain real parameter δ1, an
uncertain real parameter δ2, an uncertain complex parameter δ3 and a
twice-repeated uncertain complex parameter δ4.

randn(`state',929)
M = randn(5,5) + sqrt(-1)*randn(5,5);
F = randn(2,5) + sqrt(-1)*randn(2,5);
BlockStructure = [-1 0;-1 0;1 1;2 0];
[ubound,Q] = mussv(M,F,BlockStructure);
bounds = mussv(M,BlockStructure);
optbounds = mussv(M+Q*F,BlockStructure);

The quantities optbounds(1) and ubound should be extremely close,
and significantly lower than bounds(1) and bounds(2).

[optbounds(1) ubound]
ans =

1.6280 1.6007
[bounds(1) bounds(2)]
ans =

3.4827 3.3011

Algorithms The lower bound is computed using a power method, Young and Doyle,
1990, and Packard et al. 1988, and the upper bound is computed using
the balanced/AMI technique, Young et al., 1992, for computing the
upper bound from Fan et al., 1991.
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Peter Young and Matt Newlin wrote the original function.

The lower-bound power algorithm is from Young and Doyle, 1990, and
Packard et al. 1988.

The upper-bound is an implementation of the bound from Fan et
al., 1991, and is described in detail in Young et al., 1992. In the
upper bound computation, the matrix is first balanced using either a
variation of Osborne’s method (Osborne, 1960) generalized to handle
repeated scalar and full blocks, or a Perron approach. This generates
the standard upper bound for the associated complex µ problem. The
Perron eigenvector method is based on an idea of Safonov, (Safonov,
1982). It gives the exact computation of µ for positive matrices with
scalar blocks, but is comparable to Osborne on general matrices. Both
the Perron and Osborne methods have been modified to handle repeated
scalar and full blocks. Perron is faster for small matrices but has a
growth rate of n3, compared with less than n2 for Osborne. This is
partly due to the MATLAB implementation, which greatly favors Perron.
The default is to use Perron for simple block structures and Osborne
for more complicated block structures. A sequence of improvements to
the upper bound is then made based on various equivalent forms of the
upper bound. A number of descent techniques are used that exploit
the structure of the problem, concluding with general purpose LMI
optimization (Boyd et al.), 1993, to obtain the final answer.

The optimal choice of Q (to minimize the upper bound) in the
generalized µ problem is solved by reformulating the optimization into
a semidefinite program (Packard et al., 1991).

References [1] Boyd, S. and L. El Ghaoui, “Methods of centers for minimizing
generalized eigenvalues,” Linear Algebra and Its Applications, Vol.
188–189, 1993, pp. 63–111.

[2] Fan, M., A. Tits, and J. Doyle, “Robustness in the presence of mixed
parametric uncertainty and unmodeled dynamics,” IEEE Transactions
on Automatic Control, Vol. AC–36, 1991, pp. 25–38.
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[3] Osborne, E., “On preconditioning of matrices,” Journal of Associated
Computer Machines, Vol. 7, 1960, pp. 338–345.

[4] Packard, A.K., M. Fan and J. Doyle, “A power method for the
structured singular value,” Proc. of 1988 IEEE Conference on Control
and Decision, December 1988, pp. 2132–2137.

[5] Safonov, M., “Stability margins for diagonally perturbed
multivariable feedback systems,” IEEE Proc., Vol. 129, Part D, 1992,
pp. 251–256.

[6] Young, P. and J. Doyle, “Computation of with real and complex
uncertainties,” Proceedings of the 29th IEEE Conference on Decision
and Control, 1990, pp. 1230–1235.

[7] Young, P., M. Newlin, and J. Doyle, “Practical computation of the
mixed problem,” Proceedings of the American Control Conference, 1992,
pp. 2190–2194.

See Also mussvextract | robuststab | robustperf | wcgain | wcsens |
wcmargin
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Purpose Extract muinfo structure returned by mussv

Syntax [VDelta,VSigma,VLmi] = mussvextract(muinfo)

Description A structured singular value computation of the form

[bounds,muinfo] = mussv(M,BlockStructure)

returns detailed information in the structure muinfo. mussvextract
is used to extract the compressed information within muinfo into a
readable form.

The most general call to mussvextract extracts three usable quantities:
VDelta, VSigma, and VLmi. VDelta is used to verify the lower bound.
VSigma is used to verify the Newlin/Young upper bound and has fields
DLeft, DRight, GLeft, GMiddle, and GRight. VLmi is used to verify
the LMI upper bound and has fields Dr, Dc, Grc, and Gcr. The
relation/interpretation of these quantities with the numerical results in
bounds is described below.

Upper Bound Information

The upper bound is based on a proof that det(I - M*Delta) is nonzero
for all block-structured matrices Delta with norm smaller than
1/bounds(1). The Newlin/Young method consists of finding a scalar β
and matrices D and G, consistent with BlockStructure, such that

σ
β

I G
D MD
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L R
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⎛
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Here DL, DR, GL, GM and GR correspond to the DLeft, DRight, GLeft,
GMiddle and GRight fields respectively.

Because some uncertainty blocks and M need not be square, the matrices
D and G have a few different manifestations. In fact, in the formula
above, there are a left and right D and G, as well as a middle G. Any
such β is an upper bound of mussv(M,BlockStructure).
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It is true that if BlockStructure consists only of complex blocks, then
all G matrices will be zero, and the expression above simplifies to

σ β( ) .D MDL R
− ≤1

The LMI method consists of finding a scalar β and matrices D and G,
consistent with BlockStructure, such that

′ − + − ′ ≤M D M D j G M M Gr c cr rcβ 2 0( )

is negative semidefinite. Again, D and G have a few different
manifestations to match the row and column dimensions of M. Any such
β is an upper bound of mussv(M,BlockStructure). If BlockStructure
consists only of complex blocks, then all G matrices will be zero, and
negative semidefiniteness of M´Dr M-β

2Dc is sufficient to derive an
upper bound.

Lower Bound Information

The lower bound of mussv(M,BlockStructure) is based on finding
a “small” (hopefully the smallest) block-structured matrix VDelta
that causes det(I - M*VDelta) to equal 0. Equivalently, the matrix
M*VDelta has an eigenvalue equal to 1. It will always be true that the
lower bound (bounds(2)) will be the reciprocal of norm(VDelta).

Examples Suppose M is a 4-by-4 complex matrix. Take the block structure to be
two 1-by-1 complex blocks and one 2-by-2 complex block.

randn('state',0)
M = randn(4,4) + sqrt(-1)*randn(4,4);
BlockStructure = [1 1;1 1;2 2];

You can calculate bounds on the structured singular value using the
mussv command and extract the scaling matrices using mussvextract.

[bounds,muinfo] = mussv(M,BlockStructure);
[VDelta,VSigma,VLmi] = mussvextract(muinfo);
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You can first verify the Newlin/Young upper bound with the information
extracted from muinfo. The corresponding scalings are Dl and Dr.

Dl = VSigma.DLeft
Dl =
1.0000e+000 0 0 0

0 9.9190e-001 0 0
0 0 1.1255e+000 0
0 0 0 1.1255e+000

Dr = VSigma.DRight
Dr =
1.0000e+000 0 0 0

0 9.9190e-001 0 0
0 0 1.1255e+000 0
0 0 0 1.1255e+000

[norm(Dl*M/Dr) bounds(1)]
ans =
4.3420e+000 4.3420e+000

You can first verify the LMI upper bound with the information extracted
from muinfo. The corresponding scalings are Dr and Dc.

Dr = VLmi.Dr;
Dc = VLmi.Dc;
eig(M'*Dr*M - bounds(1)^2*Dc)
ans =
-2.0045e-005 +6.1649e-016i
-1.4688e+001 -2.4975e-016i
-2.0436e+001 -4.7583e-016i
-1.9100e+001 +1.4136e-015i

Note that VDelta matches the structure defined by BlockStructure,
and the norm of VDelta agrees with the lower bound,

VDelta
VDelta =
1.0698e-001 -2.0405e-001i 0 0

0 1.4920e-001 +1.7556e-001i 0

3-254



mussvextract

0 0 -5.4173e-002 -1
0 0 2.8071e-002 -8

[norm(VDelta) 1/bounds(2)]
ans =

0.2304 0.2304

and that M*VDelta has an eigenvalue exactly at 1.

eig(M*VDelta)
ans =
1.0000e+000 -8.3267e-017i
-6.1108e-002 +2.5748e-001i
4.1427e-018 -5.8578e-018i

-1.9637e-001 -5.6540e-002i

Keep the matrix the same, but change BlockStructure to be a 2-by-2
repeated, real scalar block and two complex 1-by-1 blocks. Run mussv
with the 'C' option to tighten the upper bound.

BlockStructure2 = [-2 0; 1 0; 1 0];
[bounds2,muinfo2] = mussv(M,BlockStructure2,'C');

You can compare the computed bounds. Note that bounds2 should
be smaller than bounds, because the uncertainty set defined by
BlockStructure2 is a proper subset of that defined by BlockStructure.

[bounds; bounds2]
ans =

4.342 4.340
3.470 3.470

You can extract the D, G and Delta from muinfo2 using mussvextract.

[VDelta2,VSigma2,VLmi2] = mussvextract(muinfo2);

As before, you can first verify the Newlin/Young upper bound with the
information extracted from muinfo. The corresponding scalings are
Dl, Dr, Gl, Gm and Gr.
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Dl = VSigma2.DLeft;
Dr = VSigma2.DRight;
Gl = VSigma2.GLeft;
Gm = VSigma2.GMiddle;
Gr = VSigma2.GRight;
dmd = Dl*M/Dr/bounds2(1) - sqrt(-1)*Gm;
SL = (eye(4)+Gl*Gl)^-0.25;
SR = (eye(4)+Gr*Gr)^-0.25;
norm(SL*dmd*SR)
ans =

1.0000

You can first verify the LMI upper bound with the information extracted
from muinfo. The corresponding scalings are Dr, Dc, Grc and Gcr.

Dr = VLmi2.Dr;
Dc = VLmi2.Dc;
Grc = VLmi2.Grc;
Gcr = VLmi2.Gcr;
eig(M'*Dr*M - bounds(1)^2 *Dc + j*(Gcr*M-M'*Grc))
ans =
-4.4665e-002 -4.4823e-019i
-5.2486e-004 +1.5623e-018i
-1.8028e-003 +3.2493e-019i
-1.2558e-003 +1.2973e-019i

VDelta2 matches the structure defined by BlockStructure, and the
norm of VDelta2 agrees with the lower bound,

VDelta2
VDelta2 =

0.2882 0 0 0
0 0.2882 0 0
0 0 -0.152 - 0.2448i 0
0 0 0 -0.0395 -0.285

[norm(VDelta2) 1/bounds2(2)]
ans =
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0.2882 0.2882

and that M*VDelta2 has an eigenvalue exactly at 1.

eig(M*VDelta2)
ans =
-3.3623e-001 +2.1885e-001i
-3.6805e-001 -1.5645e-001i
1.0000e+000 -1.4169e-016i
4.5066e-001 -3.4481e-001i

See Also mussv
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Purpose Calculate normalized coprime stability margin of plant-controller
feedback loop

Syntax [marg,freq] = ncfmargin(P,C)
[marg,freq] = ncfmargin(P,C,tol)

Description [marg,freq] = ncfmargin(P,C) calculates the normalized coprime
factor/gap metric robust stability margin b(P, C), marg, of the
multivariable feedback loop consisting of C in negative feedback with P.
The normalized coprime factor b(P, C) is defined as

b P C
I
C

I PC P I( , ) ( ) .=
⎡

⎣
⎢

⎤

⎦
⎥ − [ ]−

∞

−
1

1

C should only be the compensator in the feedback path, such as the
1-Dof architecture shown below (on the right). If the compensator has
2-Dof architecture shown below (on the left), you must eliminate the
reference channels before calling ncfmargin. freq is the frequency
associated with the upper bound on marg.

The normalized coprime factor robust stability margin lies between
0 and 1 and is used as an indication of robustness to unstructured
perturbations. Values of marg greater than 0.3 generally indicate good
robustness margins.

[marg,freq] = ncfmargin(P,C,tol) calculates the normalized
coprime factor/gap metric robust stability of the multivariable feedback
loop consisting of C in negative feedback with P. tol specifies a relative
accuracy for calculating the normalized coprime factor metric and must
be between 10–5 and 10–2. tol=0.001 is the default value.
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Examples Consider the plant model 4/(s-0.001) an unstable first order, and
two constant gain controllers, k1 = 1 and k2 = 10. Both controllers
stabilize the closed-loop system

x = tf(4,[1 0.001]);
clp1 = feedback(x,1)

The transfer function clp1 is shown as is clp2.

4
---------
s + 4.001

clp2 = feedback(x,10)

Transfer function:
4

------
s + 40

The closed-loop system with controller k1, clp1, has a normalized
coprime factor robust stability margin of 0.71 that is achieved at
infinite frequency. This indicates that the closed-loop system is very
robust to unstructured perturbations. The closed-loop system with
controller k2, clp2, has a normalized coprime factor robust stability
margin of 0.10. This indicates that the closed-loop system is not robust
to unstructured perturbations.

[marg1,freq1] = ncfmargin(x,1)
marg1 =

0.7071
freq1 =

Inf
[marg2,freq2] = ncfmargin(x,10)
marg2 =

0.0995
freq2 =

Inf
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Construct an uncertain system, xu, by adding an 11% unmodeled
dynamics to the nominal system x. Calculate the robust stability of the
closed-loop system with the feedback gain 1 and 10.

xu = x + ultidyn('uncstruc',[1 1],'Bound',0.11);

[stabmarg1, du1, report1] = robuststab(feedback(xu,1));

disp(report1{1})

Uncertain System is robustly stable to modeled uncertainty.

-- It can tolerate up to 909% of modeled uncertainty.

-- A destabilizing combination of 909% the modeled uncertainty exists,

causing an instability at 165 rad/s.

[stabmarg10, du10, report10] = robuststab(feedback(xu,10));

disp(report10{1})

Uncertain System is NOT robustly stable to modeled uncertainty.

-- It can tolerate up to 90.9% of modeled uncertainty.

-- A destabilizing combination of 90.9% the modeled uncertainty exists,

causing an instability at 1.64e+003 rad/s.

The closed-loop system with K=1 is robustly stable in the presence of
the unmodeled dynamics based on the robust stability analysis. In fact,
the closed-loop system with K=1 can tolerate 909% (or 9.09*11%) of
the unmodeled LTI dynamics, whereas the closed-loop system is not
robustly stable with a constant gain of 10 controller. The closed-loop
system with K=10 implemented can only tolerate 90.9% (or.909*11%)
of the unmodeled LTI dynamics.

Algorithms The computation of the gap amounts to solving 2-block H∞ problems,
Georgiou, Smith, 1988. The particular method used here for solving the
H∞ problems is based on Green et al., 1990. The computation of the
nugap uses the method of Vinnicombe, 1993.

References [1] McFarlane, D.C. and K. Glover, Robust Controller Design using
Normalised Coprime Factor Plant Descriptions, Lecture Notes in
Control and Information Sciences, Springer Verlag, Vol. 138, 1989.
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[2] McFarlane, D.C., and K. Glover, “A Loop Shaping Design Procedure
using Synthesis,” IEEE Transactions on Automatic Control, Vol. 37,
No. 6, 1992, pp. 759-769.

[3] Vinnicombe, G., “Measuring Robustness of Feedback Systems,”
Ph.D. Dissertation, Department of Engineering, University of
Cambridge, 1993.

See Also gapmetric | norm | wcmargin
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Purpose Balanced model truncation for normalized coprime factors

Syntax GRED = ncfmr(G)
GRED = ncfmr(G,order)
[GRED,redinfo] = ncfmr(G,key1,value1,...)
[GRED,redinfo] = ncfmr(G,order,key1,value1,...)

Description ncfmr returns a reduced order model GRED formed by a set of balanced
normalized coprime factors and a struct array redinfo containing the
left and right coprime factors of G and their coprime Hankel singular
values.

Hankel singular values of coprime factors of such a stable system
indicate the respective “state energy” of the system. Hence, reduced
order can be directly determined by examining the system Hankel SV’s.

With only one input argument G, the function will show a Hankel
singular value plot of the original model and prompt for model order
number to reduce.

The left and right normalized coprime factors are defined as [1]

• Left Coprime Factorization: G M s N sl l= −1( ) ( )

• Right Coprime Factorization: G N s M sr r= −( ) ( )1

where there exist stable Ur(s), Vr(s), Ul(s) and Vl(s) such that

U N V M I

N U M V I
r r r r

l l l l

+ =
+ =

The left/right coprime factors are stable, hence implies Mr(s) should
contain as RHP-zeros all the RHP-poles of G(s). The comprimeness
also implies that there should be no common RHP-zeros in Nr(s) and

Mr(s), i.e., when forming G N s M sr r= −( ) ( )1 , there should be no pole-zero
cancellations.

This table describes input arguments for ncmfr.
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Argument Description

G LTI model to be reduced (without any other inputs
will plot its Hankel singular values and prompt for
reduced order)

ORDER (Optional) Integer for the desired order of the reduced
model, or optionally a vector packed with desired
orders for batch runs

A batch run of a serial of different reduced order models can be
generated by specifying order = x:y, or a vector of integers. By
default, all the anti-stable part of a system is kept, because from control
stability point of view, getting rid of unstable state(s) is dangerous to
model a system. The ncfmr method allows the original model to have
jω-axis singularities.

'MaxError' can be specified in the same fashion as an alternative for
'ORDER'. In this case, reduced order will be determined when the sum
of the tails of the Hankel singular values reaches the 'MaxError'.

Argument Value Description

'MaxError' A real
number or
a vector of
different
errors

Reduce to achieve H∞ error.

When present, 'MaxError'overides
ORDER input.

'Display' 'on' or
'off'

Display Hankel singular plots (default
'off').

'Order' integer,
vector or cell
array

Order of reduced model. Use only if not
specified as 2nd argument.

Weights on the original model input and/or output can make the model
reduction algorithm focus on some frequency range of interests. But
weights have to be stable, minimum phase, and invertible.
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This table describes output arguments.

Argument Description

GRED LTI reduced order model, that becomes
multi-dimensional array when input is a serial
of different model order array.

REDINFO A STRUCT array with 3 fields:

• REDINFO.GL (left coprime factor)

• REDINFO.GR (right coprime factor)

• REDINFO.hsv (Hankel singular values)

G can be stable or unstable, continuous or discrete.

Algorithms Given a state space (A,B,C,D) of a system and k, the desired reduced
order, the following steps will produce a similarity transformation to
truncate the original state-space system to the kth order reduced model.

1 Find the normalized coprime factors of G by solving Hamiltonian
described in [1].

G N M

G
N
M

l l l

r
r

r

= [ ]

=
⎡

⎣
⎢

⎤

⎦
⎥

2 Perform kth order square root balanced model truncation on Gl (or
Gr) [2].

3 The reduced model GRED is:

ˆ ˆ

ˆ ˆ
A B

C D

A B C B B D
C D

c m l n m l

l l

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

− −⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
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where

Nl(:= Ac, Bn, Cc, Dn)

Ml := (Ac, Bm, Cc, Dm)

Cl = (Dm)
–1Cc

Dl = (Dm)
–1Dn

Examples Given a continuous or discrete, stable or unstable system, G, the
following commands can get a set of reduced order models based on
your selections:

rand('state',1234); randn('state',5678);
G = rss(30,5,4); G.d = zeros(5,4);
[g1, redinfo1] = ncfmr(G); % display Hankel SV plot

% and prompt for order (try 15:20)
[g2, redinfo2] = ncfmr(G,20);
[g3, redinfo3] = ncfmr(G,[10:2:18]);
[g4, redinfo4] = ncfmr(G,'MaxError',[0.01, 0.05]);
for i = 1:4

figure(i); eval(['sigma(G,g' num2str(i) ');']);
end

References [1] M. Vidyasagar. Control System Synthesis - A Factorization
Approach. London: The MIT Press, 1985.

[2] M. G. Safonov and R. Y. Chiang, “A Schur Method for Balanced
Model Reduction,” IEEE Trans. on Automat. Contr., vol. AC-2, no.
7, July 1989, pp. 729-733.

See Also reduce | balancmr | schurmr | bstmr | hankelmr | hankelsv
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Purpose Loop shaping design using Glover-McFarlane method

Syntax [K,CL,GAM,INFO]=ncfsyn(G)
[K,CL,GAM,INFO]=ncfsyn(G,W1)
[K,CL,GAM,INFO]=ncfsyn(G,W1,W2)
[K,CL,GAM,INFO]=ncfsyn(G,W1,W2,'ref')

Description ncfsyn is a method for designing controllers that uses a combination
of loop shaping and robust stabilization as proposed in McFarlane
and Glover [1]-[2]. The first step is for you to select a pre- and
post-compensator W1 and W2, so that the gain of the ’shaped plant’
Gs: = W2GW1 is sufficiently high at frequencies where good disturbance
attenuation is required and is sufficiently low at frequencies where
good robust stability is required. The second step is to use ncfsyn to
compute an optimal positive feedback controllers K.

The optimal Ks has the property that the sigma plot of the shaped loop

Ls=W2*G*W1*Ks

matches the target loop shape Gs optimally, roughly to within
plus or minus 20*log10(GAM) db. The number margin
GAM=1/ncfmargin(Gs,K) and is always greater than 1. GAM gives a
good indication of robustness of stability to a wide class of unstructured
plant variations, with values in the range 1<GAM<3 corresponding to
satisfactory stability margins for most typical control system designs.

[K,CL,GAM,INFO]=ncfsyn(G,W1,W2,'ref') computes the
Glover-McFarlane H∞ normalized coprime factor loop-shaping controller
K, with a reference command, for lti plant G, weights W1 and W2 if the
'ref'option is included. The closed-loop system CL represents the
transfer matrix from the reference and disturbance to the feedback
error and output of W1.

Algorithms K=W2*Ks*W1, where Ks =K∞ is an optimal H∞ controller that
simultaneously minimizes the two H∞ cost functions

3-266



ncfsyn

γ

γ

: min ( ) [ , ]

: min ( ) [

=
⎡

⎣
⎢

⎤

⎦
⎥ −

=
⎡

⎣
⎢

⎤

⎦
⎥ −

−

∞

−

K
s

K s
s

I
K

I G K Gs I

I
G

I KG K

1

1 ,, ]I
∞

Roughly speaking, this means for most plants that

σ(W2GW1 K∞), db = σ(W2GW1), db ± γ, db

σ(K∞W2GW1), db = σ(W2GW1), db ± γ, db,

so you can use the weights W1 and W2 for loopshaping. For a more
precise bounds on loopshaping accuracy, see Theorem 16.12 of Zhou
and Glover.

Theory ensures that if Gs=NM
–1 is a normalized coprime factorization

(NCF) of the weighted plant model Gs satisfying

Gs=N(jw)*N(jw) + M(jw)*M(jw) = I,

then the control system will remain robustly stable for any perturbation
Gs to the weighted plant model Gs that can be written

G N Ms = + Δ + Δ −( )( )1 2
1

for some stable pair Δ1, Δ2 satisfying

Δ
Δ
⎡

⎣
⎢

⎤

⎦
⎥ < =
∞

1

2
1MARG GAM: /

The closed-loop H∞-norm objective has the standard signal gain
interpretation. Finally it can be shown that the controller, K∞, does not
substantially affect the loop shape in frequencies where the gain of
W2GW1 is either high or low, and will guarantee satisfactory stability
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margins in the frequency region of gain cross-over. In the regulator
set-up, the final controller to be implemented is K=W1K∞W2.

Input Arguments

G LTI plant to be controlled

W1,W2 Stable minimum-phase LTI weights, either SISO or
MIMO.

Default is W1=I, W2=I

'ref' Reference input to controller. Default is no reference
input is included.

Output Arguments

K LTI controller K= W1*Ks*W2

CL I
K

I W GW K W GW I
∞

∞
−⎡

⎣
⎢

⎤

⎦
⎥ −( ) [ ]2 1

1
2 1,

, LTI H∞ optimal
closed loop

GAM

H∞ optimal cost
1

2 1b W GW K( , )∞ = hinfnorm(CL) ≥ 1

INFO Structure array containing additional information

Additional output INFO fields

INFO.emax nugap robustness
emax=1/GAM=ncfmargin(Gs,-Ks)=b(W2GW1, K∞)

INFO.Gs 'shaped plant' Gs=W2*G*W1

INFO.Ks Ks = K[[BULLET]] = NCFSYN(Gs) =
NCFSYN(W2*G*W1)
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[MARG,FREQ] = ncfmargin(G,K,TOL) calculates the normalized
coprime factor/gap metric robust stability margin assuming negative
feedback.

MARG = − =
−
⎡

⎣
⎢

⎤

⎦
⎥ + −

∞
b G K

I
K

I GK G I( , ) / ( ) [ , ]1 1

where G and K are LTI plant and controller, and TOL (default=.001) is
the tolerance used to compute the H∞ norm. FREQ is the peak frequency.
That is, the frequency at which the infinity norm is reached to within
TOL.

Algorithms See McFarlane and Glover [1]–[2] for details.

Examples The following code shows how ncfsyn can be used for loop-shaping. The
achieved loop G*K has a sigma plot is equal to that of the target loop
G*W1 to within plus or minus 20*log10(GAM) db.

s=zpk('s');
G=(s-1)/(s+1)^2;
W1=0.5/s;
[K,CL,GAM]=ncfsyn(G,W1);
sigma(G*K,'r',G*W1,'r-.',G*W1*GAM,'k-.',G*W1/GAM,'k-.')
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Achieved loop G*K and shaped loop Gs, ±20log(GAM) db

References [1] McFarlane, D.C., and K. Glover, Robust Controller Design using
Normalised Coprime Factor Plant Descriptions, Springer Verlag,
Lecture Notes in Control and Information Sciences, vol. 138, 1989.

[2] McFarlane, D.C., and K. Glover, “A Loop Shaping Design Procedure
using Synthesis,” IEEE Transactions on Automatic Control, vol. 37,
no. 6, pp. 759– 769, June 1992.

[3] Vinnicombe, G., “Measuring Robustness of Feedback Systems,” PhD
dissertation, Department of Engineering, University of Cambridge,
1993.

[4] Zhou, K., and J.C. Doyle, Essentials of Robust Control. NY:
Prentice-Hall, 1998.

See Also gapmetric | hinfsyn | loopsyn | ncfmargin

3-270



newlmi

Purpose Attach identifying tag to LMIs

Syntax tag = newlmi

Description newlmi adds a new LMI to the LMI system currently described and
returns an identifier tag for this LMI. This identifier can be used in
lmiterm, showlmi, or dellmi commands to refer to the newly declared
LMI. Tagging LMIs is optional and only meant to facilitate code
development and readability.

Identifiers can be given mnemonic names to help keep track of the
various LMIs. Their value is simply the ranking of each LMI in the
system (in the order of declaration). They prove useful when some LMIs
are deleted from the LMI system. In such cases, the identifiers are the
safest means of referring to the remaining LMIs.

See Also setlmis | lmivar | lmiterm | getlmis | lmiedit | dellmi
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Purpose Convert value for atom in normalized coordinates to corresponding
actual value

Syntax avalue = normalized2actual(A,NV)

Description Converts a normalized value NV of a atom to its corresponding actual
(unnormalized) value.

If NV is an array of values, then avalue will be an array of the same
dimension.

Examples Create uncertain real parameters with a range that is symmetric about
the nominal value, where each endpoint is 1 unit from the nominal.
Points that lie inside the range are less than 1 unit from the nominal,
while points that lie outside the range are greater than 1 unit from
the nominal.

a = ureal('a',3,'range',[1 5]);
actual2normalized(a,[1 3 5])
ans =

-1.0000 -0.0000 1.0000
normalized2actual(a,[-1 1])
ans =

1.0000 5.0000
normalized2actual(a,[-1.5 1.5])
ans =

0.0000 6.0000

See Also actual2normalized | robuststab | robustperf
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Purpose Assess robust stability of polytopic or parameter-dependent system

Syntax [tau,Q0,Q1,...] = pdlstab(pds,options)

Description pdlstab uses parameter-dependent Lyapunov functions to establish the
stability of uncertain state-space models over some parameter range
or polytope of systems. Only sufficient conditions for the existence
of such Lyapunov functions are available in general. Nevertheless,
the resulting robust stability tests are always less conservative than
quadratic stability tests when the parameters are either time-invariant
or slowly varying.

For an affine parameter-dependent system

E(p)x˙ = A(p)x + B(p)u

y = C(p)x + D(p)u

with p = (p1, . . ., pn) Rn, pdlstab seeks a Lyapunov function of the form

V(xp, ) = xTQ(p)–1x, Q(p) = Q0 + p1Q1 + . . .pnQn

such that dV(x, p)/dt < 0 along all admissible parameter trajectories.
The system description pds is specified with psys and contains
information about the range of values and rate of variation of each
parameter pi.

For a time-invariant polytopic system

Ex˙ = Ax + Bu

y = Cx + Du

with

A jE B
C D

A jE B
C Di

i

n
i i

i i
i i

i

n+⎛

⎝
⎜

⎞

⎠
⎟ =

+⎛

⎝
⎜

⎞

⎠
⎟ ≥ =

= =
∑ ∑α α α

1 1
0 1, ,  

(3-17)

pdlstab seeks a Lyapunov function of the form

V(x, α) = xTQ(α)–1x, Q(α) = α1Q1 + . . .+ αnQn
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such that dV(x, α)/dt < 0 for all polytopic decompositions of the form
Equation 3-17.

Several options and control parameters are accessible through the
optional argument options:

• Setting options(1)=0 tests robust stability (default)

• When options(2)=0, pdlstab uses simplified sufficient conditions
for faster running times. Set options(2)=1 to use the least
conservative conditions

Tips For affine parameter-dependent systems with time-invariant
parameters, there is equivalence between the robust stability of

E p x A p x( ) ( ) = (3-18)

and that of the dual system

E p z A p zT T( ) ( ) = (3-19)

However, the second system may admit an affine parameter-dependent
Lyapunov function while the first does not.

In such case, pdlstab automatically restarts and tests stability on the
dual system Equation 3-19 when it fails on Equation 3-18.

See Also quadstab
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Purpose Time response of parameter-dependent system along given parameter
trajectory

Syntax pdsimul(pds,'traj',tf,'ut',xi,options)

[t,x,y] = pdsimul(pds,pv,'traj',tf,'ut',xi,options)

Description pdsimul simulates the time response of an affine parameter-dependent
system

E(p)x˙ = A(p)x + B(p)u

y = C(p)x + D(p)u

along a parameter trajectory p(t) and for an input signal u(t). The
parameter trajectory and input signals are specified by two time
functions p=traj(t) and u=ut(t). If 'ut' is omitted, the response to a
step input is computed by default.

The affine system pds is specified with psys. The function pdsimul also
accepts the polytopic representation of such systems as returned by
aff2pol(pds) or hinfgs. The final time and initial state vector can be
reset through tf and xi (their respective default values are 5 seconds
and 0). Finally, options gives access to the parameters controlling the
ODE integration (type help gear for details).

When invoked without output arguments, pdsimul plots the output
trajectories y(t). Otherwise, it returns the vector of integration time
points t as well as the state and output trajectories x,y.

See Also psys | pvec
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Purpose Compute polytopic coordinates with respect to box corners

Syntax vertx = polydec(PV)
[C,vertx] = polydec(PV,P)

Description vertx = polydec(PV) takes an uncertain parameter vector PV taking
values ranging in a box, and returns the corners or vertices of the box
as columns of the matrix vertx.

[C,vertx] = polydec(PV,P) takes an uncertain parameter vector
PV and a value P of the parameter vector PV, and returns the convex
decomposition C of P over the set VERTX of box corners:

P = c1*VERTX(:,1) + ... + cn*VERTX(:,n)
cj >=0 , c1 + ... + cn = 1

The list vertx of corners can be obtained directly by typing

vertx = polydec(PV)

See Also pvec | pvinfo | aff2pol | hinfgs
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Purpose Perform Popov robust stability test

Syntax [t,P,S,N] = popov(sys,delta,flag)

Description popov uses the Popov criterion to test the robust stability of dynamical
systems with possibly nonlinear and/or time-varying uncertainty. The
uncertain system must be described as the interconnection of a nominal
LTI system sys and some uncertainty delta.

The command

[t,P,S,N] = popov(sys,delta)

tests the robust stability of this interconnection. Robust stability is
guaranteed if t < 0. Then P determines the quadratic part xTPx of the
Lyapunov function and D and S are the Popov multipliers.

If the uncertainty delta contains real parameter blocks, the
conservatism of the Popov criterion can be reduced by first performing
a simple loop transformation. To use this refined test, call popov with
the syntax

[t,P,S,N] = popov(sys,delta,1)

See Also quadstab | pdlstab
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Purpose Inquire about polytopic or parameter-dependent systems created with
psys

Syntax psinfo(ps)
[type,k,ns,ni,no] = psinfo(ps)
pv = psinfo(ps,'par')
sk = psinfo(ps,'sys',k)
sys = psinfo(ps,'eval',p)

Description psinfo is a multi-usage function for queries about a polytopic or
parameter-dependent system ps created with psys. It performs the
following operations depending on the calling sequence:

• psinfo(ps) displays the type of system (affine or polytopic); the
number k of SYSTEM matrices involved in its definition; and the
numbers of ns, ni, no of states, inputs, and outputs of the system.
This information can be optionally stored in MATLAB variables by
providing output arguments.

• pv = psinfo(ps,'par') returns the parameter vector description
(for parameter-dependent systems only).

• sk = psinfo(ps,'sys',k) returns the k-th SYSTEM matrix involved
in the definition of ps. The ranking k is relative to the list of systems
syslist used in psys.

• sys = psinfo(ps,'eval',p) instantiates the system for a given
vector p of parameter values or polytopic coordinates.

For affine parameter-dependent systems defined by the SYSTEM
matrices S0, S1, . . ., Sn, the entries of p should be real parameter
values p1, . . ., pn and the result is the LTI system of SYSTEM matrix

S(p) = S0 + p1S1 + . . .+ pnSn

For polytopic systems with SYSTEM matrix ranging in

Co{S1, . . ., Sn},
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the entries of p should be polytopic coordinates p1, . . ., pn satisfying
pj ≥ 0 and the result is the interpolated LTI system of SYSTEM matrix

S
p S p S

p p
n n

n
=

+ +
+ +

1 1

1





See Also psys
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Purpose Specify polytopic or parameter-dependent linear systems

Syntax pols = psys(syslist)
affs = psys(pv,syslist)

Description psys specifies state-space models where the state-space matrices can be
uncertain, time-varying, or parameter-dependent.

psys supports two types of uncertain state-space models:

• Polytopic systems

E(t) x˙ = A(t)x + B(t)u

y = C(t)x + D(t)u

whose SYSTEM matrix takes values in a fixed polytope:

A t jE t B t
C t D t

S
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C D
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( ) ( )
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where S1, . . ., Sk are given “vertex” systems and

Co{S S Sk i i i i
i

k

i

k

1
11

0 1,..., } : ,= ≥ =
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪==
∑∑α α α

denotes the convex hull of S1, . . ., Sk (polytope of matrices with
vertices S1, . . ., Sk)

• Affine parameter-dependent systems

E(p)x˙ = A(p)x + B(p)u

y = C(p)x + D(p)u
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where A(· ); B(· ), . . ., E(· ) are fixed affine functions of some vector
p = (p1, . . ., pn) of real parameters, i.e.,

A p jE p B p
C p D p

S p

A jE B
C D
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( ) ( )
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⎥

  

where S0, S1, . . ., Sn are given SYSTEM matrices. The parameters pi
can be time-varying or constant but uncertain.

The argument syslist lists the SYSTEM matrices Si characterizing
the polytopic value set or parameter dependence. In addition, the
description pv of the parameter vector (range of values and rate of
variation) is required for affine parameter- dependent models (see pvec
for details). Thus, a polytopic model with vertex systems S1, . . ., S4 is
created by

pols = psys([s1,s2,s3,s4])

while an affine parameter-dependent model with 4 real parameters is
defined by

affs = psys(pv,[s0,s1,s2,s3,s4])

The output is a structured matrix storing all the relevant information.

See Also psinfo | pvec | aff2pol
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Purpose Specify range and rate of variation of uncertain or time-varying
parameters

Syntax pv = pvec('box',range,rates)
pv = pvec('pol',vertices)

Description pvec is used in conjunction with psys to specify parameter-dependent
systems. Such systems are parametrized by a vector p = (p1, . . ., pn) of
uncertain or time-varying real parameters pi. The function pvec defines
the range of values and the rates of variation of these parameters.

The type 'box' corresponds to independent parameters ranging in
intervals

p p pj j j≤ ≤

The parameter vector p then takes values in a hyperrectangle of Rn

called the parameter box. The second argument range is an n-by-2

matrix that stacks up the extremal values pj and pj of each pj. If
the third argument rates is omitted, all parameters are assumed
time-invariant. Otherwise, rates is also an n-by-2 matrix and its j-th

row specifies lower and upper bounds ν j and ν j on
dp

dt
j :

ν νj
j

j
dp

dt
≤ ≤

Set ν j = –Inf and ν j = Inf if pj(t) can vary arbitrarily fast or
discontinuously.

The type 'pol' corresponds to parameter vectors p ranging in a
polytope of the parameter space Rn. This polytope is defined by a set of
vertices V1, . . ., Vn corresponding to “extremal” values of the vector p.
Such parameter vectors are declared by the command

pv = pvec('pol',[v1,v2, . . ., vn])
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where the second argument is the concatenation of the vectors
v1,...,vn.

The output argument pv is a structured matrix storing the parameter
vector description. Use pvinfo to read the contents of pv.

Examples Consider a problem with two time-invariant parameters

p1 [–1, 2], p2 [20, 50]

The corresponding parameter vector p = (p1, p2) is specified by

pv = pvec('box',[-1 2;20 50])

Alternatively, this vector can be regarded as taking values in the
rectangle drawn in the following figure. The four corners of this
rectangle are the four vectors

v v v v1 2 3 4
1

20
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2
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=

−⎛

⎝
⎜

⎞

⎠
⎟ =

−⎛

⎝
⎜

⎞

⎠
⎟ =

⎛

⎝
⎜

⎞

⎠
⎟ =

⎛

⎝
⎜

⎞

⎠
⎟, , ,   

Hence, you could also specify p by

pv = pvec('pol',[v1,v2,v3,v4])
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Parameter box

See Also pvinfo | psys
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Purpose Describe parameter vector specified with pvec

Syntax [typ,k,nv] = pvinfo(pv)
[pmin,pmax,dpmin,dpmax] = pvinfo(pv,'par',j)
vj = pvinfo(pv,'par',j)
p = pvinfo(pv,'eval',c)

Description pvec retrieves information about a vector p = (p1, . . ., pn) of real
parameters declared with pvec and stored in pv. The command
pvinfo(pv) displays the type of parameter vector ('box' or 'pol'), the
number n of scalar parameters, and for the type 'pol', the number of
vertices used to specify the parameter range.

For the type 'box':

[pmin,pmax,dpmin,dpmax] = pvinfo(pv,'par',j)

returns the bounds on the value and rate of variations of the j-th real
parameter pj. Specifically,

p p t p dp
dp

dt
dpj

jmin ( ) max, min max≤ ≤ ≤ ≤

For the type 'pol':

pvinfo(pv,'par',j)

returns the j-th vertex of the polytope of Rn in which p ranges, while

pvinfo(pv,'eval',c)

returns the value of the parameter vector p given its barycentric
coordinates c with respect to the polytope vertices (V1, . . .,Vk). The
vector c must be of length k and have nonnegative entries. The
corresponding value of p is then given by
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See Also pvec | psys
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Purpose Compute quadraticH∞ performance of polytopic or parameter-dependent
system

Syntax [perf,P] = quadperf(ps,g,options)

Description The RMS gain of the time-varying system

E t x A t x B t u y C t X D t u( ) ( ) ( ) , ( ) ( ) = + = +   (3-20)

is the smallest γ > 0 such that

y uL L
2 2
≤ γ (3-21)

for all input u(t) with bounded energy. A sufficient condition for
Equation 3-21 is the existence of a quadratic Lyapunov function

V(x) = xTPx, P > 0

such that

∀ ∈ + − <u L
dV
dt

y y u uT T
2

2 0,  γ

Minimizing γ over such quadratic Lyapunov functions yields the
quadratic H∞ performance, an upper bound on the true RMS gain.

The command

[perf,P] = quadperf(ps)

computes the quadratic H∞ performance perf when Equation 3-20 is
a polytopic or affine parameter-dependent system ps (see psys). The
Lyapunov matrix P yielding the performance perf is returned in P.

The optional input options gives access to the following task and
control parameters:
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• If options(1)=1, perf is the largest portion of the parameter box
where the quadratic RMS gain remains smaller than the positive
value g (for affine parameter-dependent systems only). The default
value is 0.

• If options(2)=1, quadperf uses the least conservative quadratic
performance test. The default is options(2)=0 (fast mode)

• options(3) is a user-specified upper bound on the condition number
of P (the default is 109).

See Also quadstab | psys
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Purpose Quadratic stability of polytopic or affine parameter-dependent systems

Syntax [tau,P] = quadstab(ps,options)

Description For affine parameter-dependent systems

E(p)x˙ = A(p)x, p(t) = (p1(t), . . ., pn(t))

or polytopic systems

E(t)x˙ = A(t)x, (A, E) Co{(A1, E1), . . ., (An, En)},

quadstab seeks a fixed Lyapunov function V(x) = xTPx with P > 0
that establishes quadratic stability. The affine or polytopic model is
described by ps (see psys).

The task performed by quadstab is selected by options(1):

• if options(1)=0 (default), quadstab assesses quadratic stability by
solving the LMI problem

Minimize τ over Q = QT such that

ATQE + EQAT < τI for all admissible values of (A, E)

Q > I

The global minimum of this problem is returned in tau and the
system is quadratically stable if tau < 0.

• if options(1)=1, quadstab computes the largest portion of the
specified parameter range where quadratic stability holds (only
available for affine models). Specifically, if each parameter pi varies
in the interval

p p pi i i i i∈ − +[ , ],0 0δ δ

quadstab computes the largest Θ > 0 such that quadratic stability
holds over the parameter box
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p p pi i i i i∈ − +[ , ]0 0Θ Θδ δ

This “quadratic stability margin” is returned in tau and ps is
quadratically stable if tau ≥ 1.

Given the solution Qopt of the LMI optimization, the Lyapunov matrix P

is given by P = Qopt
−1 . This matrix is returned in P.

Other control parameters can be accessed through options(2) and
options(3):

• if options(2)=0 (default), quadstab runs in fast mode, using the
least expensive sufficient conditions. Set options(2)=1 to use the
least conservative conditions

• options(3) is a bound on the condition number of the Lyapunov
matrix P. The default is 109.

See Also pdlstab | decay | quadperf | psys
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Purpose Generate random uncertain atom objects

Syntax A = randatom(Type)
A = randatom(Type,sz)
A = randatom

Description A = randatom(Type) generates a 1-by-1 type uncertain object.
Valid values for Type include 'ureal', 'ultidyn', 'ucomplex', and
'ucomplexm'.

A = randatom(Type,sz) generates an sz(1)-by-sz(2) uncertain
object. Valid values for Type include 'ultidyn' or 'ucomplexm'. If
Type is set to 'ureal' or 'ucomplex', the size variable is ignored and A
is a 1-by-1 uncertain object.

A = randatom, where randatom has no input arguments, results in a
1-by-1 uncertain object. The class is of this object is randomly selected
between 'ureal','ultidyn' and 'ucomplex'.

In general, both rand and randn are used internally. You can control
the result of randatom by setting seeds for both random number
generators before calling the function.

Examples The following statement creates the ureal uncertain object xr. Note
that your display can differ because a random seed is used.

xr = randatom('ureal')
Uncertain Real Parameter: Name BMSJA, NominalValue -6.75,
Range [-7.70893 -1.89278]

The following statement creates the variable ultidyn uncertain object
xlti with three inputs and four outputs. You will get the results shown
below if both the random variable seeds are set to 29.

rand('seed',29);
randn('seed',29);
xlti = randatom('ultidyn',[4 3])
Uncertain GainBounded LTI Dynamics: Name OOJGS, 4x3,
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Gain Bound = 0.646

See Also rand | randn | randumat | randuss | ucomplex | ucomplexm | ultidyn

3-292



randumat

Purpose Generate random uncertain umat objects

Syntax um = randumat(ny,nu)
um = randumat

Description um = randumat(ny,nu) generates an uncertain matrix of size
ny-by-nu. randumat randomly selects from uncertain atoms of type
'ureal', 'ultidyn', and 'ucomplex'.

um = randumat results in a 1-by-1 umat uncertain object, including up
to four uncertain objects.

Examples The following statement creates the umat uncertain object x1 of size
2-by-3. Note that your result can differ because a random seed is used.

x1 = randumat(2,3)
UMAT: 2 Rows, 3 Columns

ROQAW: complex, nominal = 9.92+4.84i, radius = 0.568,
1 occurrence
UEPDY: real, nominal = -5.81, variability = [-1.98681 0.133993],

3 occurrences
VVNHL: complex, nominal = 5.64-6.13i, radius = 1.99,

2 occurrences

The following statement creates the umat uncertain object x2 of size
4-by-2 with the seed 91.

rand('seed',91); randn('seed',91);
x2 = randumat(4,2)
UMAT: 4 Rows, 2 Columns

SSAFF: complex, nominal = -0.366+2.81i, radius = 1.76,
3 occurrences

VDTIH: complex, nominal = -3.03-3i, +/- 27.5%, 2 occurrences
XOLLJ: real, nominal = 0.0628, range = [-3.73202 4.28174],

1 occurrence

See Also rand | randn | randatom | randuss | ucomplex | ultidyn
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Purpose Generate stable, random uss objects

Syntax usys = randuss(n)
usys = randuss(n,p)
usys = randuss(n,p,m)
usys = randuss(n,p,m,Ts)
usys = randuss

Description usys = randuss(n) generates an nth order single-input/single-output
uncertain continuous-time system. randuss randomly selects from
uncertain atoms of type 'ureal', 'ultidyn', and 'ucomplex'.

usys = randuss(n,p) generates an nth order single-input uncertain
continuous-time system with p outputs.

usys = randuss(n,p,m) generates an nth order uncertain
continuous-time system with p outputs and m inputs.

usys = randuss(n,p,m,Ts) generates an nth order uncertain
discrete-time system with p outputs and m inputs. The sample time
is Ts.

usys = randuss (without arguments) results in a 1-by-1 uncertain
continuous-time uss object with up to four uncertain objects.

In general, both rand and randn are used internally. You can control the
result of randuss by setting seeds for both random number generators
before calling the function.

Examples The statement creates a fifth order, continuous-time uncertain system
s1 of size 2-by-3. Note your display can differ because a random seed
is used.

s1 = randuss(5,2,3)
USS: 5 States, 2 Outputs, 3 Inputs, Continuous System

CTPQV: 1x1 LTI, max. gain = 2.2, 1 occurrence
IGDHN: real, nominal = -4.03, variability =

[-3.74667 22.7816]%, 1 occurrence
MLGCD: complex, nominal = 8.36+3.09i, +/- 7.07%, 1 occurrence
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OEDJK: complex, nominal = -0.346-0.296i, radius = 0.895,
1 occurrence

See Also rand | randn | randatom | randumat | ucomplex | ultidyn
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Purpose Simplified access to Hankel singular value based model reduction
functions

Syntax GRED = reduce(G)
GRED = reduce(G,order)
[GRED,redinfo] = reduce(G,'key1','value1',...)
[GRED,redinfo] = reduce(G,order,'key1','value1',...)

Description reduce returns a reduced order model GRED of G and a struct array
redinfo containing the error bound of the reduced model, Hankel
singular values of the original system and some other relevant model
reduction information.

An error bound is a measure of how close GRED is to G and is computed
based on either additive error, G-GRED ∞, multiplicative error,
G–1(G-GRED) ∞, or nugap error (ref.: ncfmr) [1],[4],[5].

Hankel singular values of a stable system indicate the respective state
energy of the system. Hence, reduced order can be directly determined
by examining the system Hankel SV’s. Model reduction routines, which
based on Hankel singular values are grouped by their error bound types.
In many cases, the additive error method GRED=reduce(G,ORDER) is
adequate to provide a good reduced order model. But for systems
with lightly damped poles and/or zeros, a multiplicative error
method (namely, GRED=reduce(G,ORDER,'ErrorType','mult')) that
minimizes the relative error between G and GRED tends to produce a
better fit.

This table describes input arguments for reduce.

Argument Description

G LTI model to be reduced (without any other inputs will
plot its Hankel singular values and prompt for reduced
order).

ORDER (Optional) Integer for the desired order of the reduced
model, or optionally a vector packed with desired
orders for batch runs.
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A batch run of a serial of different reduced order models can be
generated by specifying order = x:y, or a vector of integers. By
default, all the anti-stable part of a physical system is kept, because
from control stability point of view, getting rid of unstable state(s) is
dangerous to model a system.

'MaxError' can be specified in the same fashion as an alternative
for ' ORDER ' after an 'ErrorType' is selected. In this case, reduced
order will be determined when the sum of the tails of the Hankel SV’s
reaches the 'MaxError'.

Argument Value Description

'Algorithm' 'balance'

'schur'

'hankel'

'bst'

'ncf'

Default for 'add' (balancmr)

Option for 'add' (schurmr)

Option for 'add' (hankelmr)

Default for 'mult' (bstmr)

Default for 'ncf' (ncfmr)

'ErrorType' 'add'

'mult'

'ncf'

Additive error (default)

Multiplicative error at model output

NCF nugap error

'MaxError' A real
number or
a vector of
different
errors

Reduce to achieve H∞ error.

When present, 'MaxError' overrides
ORDER input.

'Weights' {Wout,Win}
cell array

Optimal 1x2 cell array of LTI weights
Wout (output) and Win (input); default
is both identity; used only with
'ErrorType', 'add'. Weights must be
invertible.
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Argument Value Description

'Display' 'on' or
'off'

Display Hankel singular plots (default
'off').

'Order' Integer,
vector or cell
array

Order of reduced model. Use only if not
specified as 2nd argument.

Weights on the original model input and/or output can make the model
reduction algorithm focus on some frequency range of interests. But
weights have to be stable, minimum phase and invertible.

This table describes output arguments.

Argument Description

GRED LTI reduced order model. Becomes multi-dimensional
array when input is a serial of different model order
array.

REDINFO A STRUCT array with 3 fields:

• REDINFO.ErrorBound

• REDINFO.StabSV

• REDINFO.UnstabSV

For 'hankel' algorithm, STRUCT array becomes:

• REDINFO.ErrorBound

• REDINFO.StabSV

• REDINFO.UnstabSV

• REDINFO.Ganticausal

For 'ncf' option, STRUCT array becomes:

• REDINFO.GL

• REDINFO.GR
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Argument Description

• REDINFO.hsv

G can be stable or unstable. G and GRED can be either continuous or
discrete.

A successful model reduction with a well-conditioned original model G
will ensure that the reduced model GRED satisfies the infinity norm
error bound.

Examples Given a continuous or discrete, stable or unstable system, G, the
following commands can get a set of reduced order models based on
your selections:

rand('state',1234); randn('state',5678);G = rss(30,5,4);
[g1, redinfo1] = reduce(G); % display Hankel SV plot

% and prompt for order
[g2, redinfo2] = reduce(G,20); % default to balancmr
[g3, redinfo3] = reduce(G,[10:2:18],'algorithm','schur');

% select schurmr
[g4, redinfo] = reduce(G,'ErrorType','mult','MaxError',[0.01, 0.05]);
rand('state',12345); randn('state',6789);
wt1 = rss(6,5,5); wt1.d = eye(5)*2;
wt2 = rss(6,4,4); wt2.d = 2*eye(4);
[g5, redinfo5] = reduce(G, [10:2:18], 'weight',{wt1,wt2});
[g6, redinfo6] = reduce(G,'ErrorType','add','algorithm','hankel, ...

'maxerror',[0.01]);
for i = 1:6

figure(i); eval(['sigma(G,g' num2str(i) ');']);
end

References [1] K. Glover, “All Optimal Hankel Norm Approximation of Linear
Multivariable Systems, and Their L∝- error Bounds,” Int. J. Control,
vol. 39, no. 6, pp. 1145-1193, 1984.
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[2] M. G. Safonov and R. Y. Chiang, “A Schur Method for Balanced
Model Reduction,” IEEE Trans. on Automat. Contr., vol. AC-2, no.
7, July 1989, pp. 729-733.

[3] M. G. Safonov, R. Y. Chiang and D. J. N. Limebeer, “Optimal Hankel
Model Reduction for Nonminimal Systems,” IEEE Trans. on Automat.
Contr., vol. 35, No. 4, April, 1990, pp. 496-502.

[4] M. G. Safonov and R. Y. Chiang, “Model Reduction for Robust
Control: A Schur Relative-Error Method,” International Journal of
Adaptive Control and Signal Processing, vol. 2, pp. 259-272, 1988.

[5] K. Zhou, “Frequency weighted L[[BULLET]] error bounds,” Syst.
Contr. Lett., Vol. 21, 115-125, 1993.

See Also balancmr | schurmr | bstmr | ncfmr | hankelmr | hankelsv
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Purpose Replicate and tile array

Syntax B = repmat(A,M,N)

Description B = repmat(A,M,N) creates a large matrix B consisting of an M-by-N
tiling of copies of A.

B = repmat(A,[M N]) accomplishes the same result as repmat(A,M,N).

B = repmat(A,[M N P ...]) tiles the array A to produce an
M-by-N-by-P-by-... block array. A can be N-D.

repmat(A,M,N) for scalar A is commonly used to produce an M-by-N
matrix filled with values of A.

Examples Simple examples of using repmat are

repmat(randumat(2,2),2,3)
repmat(ureal('A',6),[4 2])
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Purpose Options object for use with robuststab and robustperf

Note robopt will be removed in a future version. Use
robuststabOptions or robustperfOptions instead.
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Purpose Robust performance margin of uncertain multivariable system

Syntax perfmarg = robustperf(usys)
[perfmarg,wcu,report,info] = robustperf(usys)
[perfmarg,wcu,report,info] = robustperf(usys,opt)

Description The performance of a nominally stable uncertain system model
will generally degrade for specific values of its uncertain elements.
robustperf, largely included for historical purposes, computes the
robust performance margin, which is one measure of the level of
degradation brought on by the modeled uncertainty.

As with other uncertain-system analysis tools, only bounds on the
performance margin are computed. The exact robust performance
margin is guaranteed to lie between these upper and lower bounds.

The computation used in robustperf is a frequency-domain calculation.
Coupled with stability of the nominal system, this frequency domain
calculation determines robust performance of usys. If the input system
usys is a ufrd, then the analysis is performed on the frequency grid
within the ufrd. Note that the stability of the nominal system is not
verified by the computation. If the input system sys is a uss, then
the stability of the nominal system is first checked, an appropriate
frequency grid is generated (automatically), and the analysis performed
on that frequency grid. In all discussion that follows, N denotes the
number of points in the frequency grid.

Basic Syntax

Suppose usys is a ufrd or uss withM uncertain elements. The results of

[perfmarg,perfmargunc,Report] = robustperf(usys)

are such that perfmarg is a structure with the following fields:
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Field Description

LowerBound Lower bound on robust performance margin,
positive scalar.

UpperBound Upper bound on robust performance margin,
positive scalar.

CriticalFrequency The value of frequency at which the
performance degradation curve crosses the
y = 1/x curve. See “Generalized Robustness
Analysis”.

perfmargunc is a struct of values of uncertain elements associated
with the intersection of the performance degradation curve and the y =
1/x curve. See “Generalized Robustness Analysis”. There are M field
names, which are the names of uncertain elements of usys.

Report is a text description of the robust performance analysis results.

If usys is an array of uncertain models, the outputs are struct arrays
whose entries correspond to each model in the array.

Examples Create a plant with a nominal model of an integrator, and include
additive unmodeled dynamics uncertainty of a level of 0.4 (this
corresponds to 100% model uncertainty at 2.5 rads/s).

P = tf(1,[1 0]) + ultidyn('delta',[1 1],'bound',0.4);

Design a “proportional” controller K that puts the nominal closed-loop
bandwidth at 0.8 rad/s. Roll off K at a frequency 25 times the nominal
closed-loop bandwidth. Form the closed-loop sensitivity function.

BW = 0.8;
K = tf(BW,[1/(25*BW) 1]);
S = feedback(1,P*K);

Assess the performance margin of the closed-loop sensitivity function.
Because the nominal gain of the sensitivity function is 1, and the
performance degradation curve is monotonically increasing (see
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“Generalized Robustness Analysis”), the performance margin should
be less than 1.

[perfmargin,punc] = robustperf(S);
perfmargin
perfmargin =

UpperBound: 7.4305e-001
LowerBound: 7.4305e-001

CriticalFrequency: 5.3096e+000

You can verify that the upper bound of the performance margin
corresponds to a point on or above the y=1/x curve. First, compute the
normalized size of the value of the uncertain element, and check that
this agrees with the upper bound.

nsize = actual2normalized(S.Uncertainty.delta, punc.delta)
nsize =
perfmargin.UpperBound
ans =

7.4305e-001

Compute the system gain with that value substituted, and verify that
the product of the normalized size and the system gain is greater than
or equal to 1.

gain = norm(usubs(S,punc),inf,.00001);
nsize*gain
ans =

1.0000e+000

Finally, as a sanity check, verify that the robust performance margin is
less than the robust stability margin.

[stabmargin] = robuststab(S);
stabmargin
stabmargin =

UpperBound: 3.1251e+000
LowerBound: 3.1251e+000
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DestabilizingFrequency: 4.0862e+000

While the robust stability margin is easy to describe (poles migrating
from stable region into unstable region), describing the robust
performance margin is less elementary. See the diagrams and figures
in “Generalized Robustness Analysis”. Rather than finding values
for uncertain elements that lead to instability, the analysis finds
values of uncertain elements “corresponding to the intersection
point of the performance degradation curve with a y=1/x hyperbola.”
This characterization, mentioned above in the description of
perfmarg.CriticalFrequency and perfmargunc, is used often in the
descriptions below.

Basic Syntax with Fourth Output Argument

A fourth output argument yields more specialized information,
including sensitivities and frequency-by-frequency information.

[perfmarg,perfmargunc,Report,Info] = robustperf(usys)

In addition to the first 3 output arguments, described previously, Info
is a structure with the following fields:

Field Description

Sensitivity A struct with M fields, field names are names of
uncertain elements of usys. Values of fields are
positive and contain the local sensitivity of the overall
Stability Margin to that element’s uncertainty range.
For instance, a value of 25 indicates that if the
uncertainty range is enlarged by 8%, then the stability
margin should drop by about 2% (25% of 8). If the
Sensitivity property of the robustperfOptions
object is 'off', the values are set to NaN.

Frequency N-by-1 frequency vector associated with analysis.

BadUncertainValues N-by-1 struct array containing the worst uncertain
element values at each frequency.
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Field Description

MussvBnds A 1-by-2 frd, with upper and lower bounds from mussv.
The (1,1) entry is the µ-upper bound (corresponds
to perfmarg.LowerBound) and the (1,2) entry is the
µ-lower bound (for perfmarg.UpperBound).

MussvInfo Structure of compressed data from mussv.

Specifying Additional Options

Use robustperfOptions to specify additional options for the
robustperf computation. For example, you can control what is
displayed during the computation, turn the sensitivity computation on
or off, set the step size in the sensitivity computation, or control the
option argument used in the underlying call to mussv. For example, you
can turn the display on and turn off the sensitivity by executing

opt = robustperfOptions('Sensitivity','off','Display','on');
[PerfMarg,Destabunc,Report,Info] = robustperf(usys,opt)

See the robustperfOptions reference page for more information about
available options.

Algorithms A rigorous robust performance analysis consists of two steps:

1 Verify that the nominal system is stable.

2 Robust performance analysis on an augmented system.

The algorithm in robustperf follows this in spirit, with the following
limitations:

• If usys is a uss object, then robustperf explicitly checks the stability
of the nominal value. However, if usys is a ufrd model, robustperf
instead assumes that the nominal value is stable, and does not
perform this check.
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• The exact performance margin is guaranteed to be no larger
than UpperBound (some uncertain elements associated with this
magnitude cause instability – one instance is returned in the
structure perfmargunc). The instability created by perfmargunc
occurs at the frequency value in CriticalFrequency.

• Similarly, the exact performance margin is guaranteed to be no
smaller than LowerBound.

Limitations Because the calculation is carried out with a frequency gridding, it
is possible (likely) that the true critical frequency is missing from
the frequency vector used in the analysis. This is similar to the
problem in robuststab. However, in comparing to robuststab, the
problem in robustperf is less acute. The robust performance margin,
considered a function of problem data and frequency, is typically a
continuous function (unlike the robust stability margin, described
in Getting Reliable Estimates of Robustness Margins). Hence, in
robust performance margin calculations, increasing the density of the
frequency grid will always increase the accuracy of the answers, and in
the limit, answers arbitrarily close to the actual answers are obtainable
with finite frequency grids.

See Also mussv | norm | robustperfOptions | robuststab |
actual2normalized | wcgain | wcsens | wcmargin
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Purpose Option set for robustperf

Syntax options = robustperfOptions
options = robustperfOptions(Name,Value,...)

Description options = robustperfOptions returns the default option set for the
robustperf command.

options = robustperfOptions(Name,Value,...) creates an option
set with the options specified by one or more Name,Value pair
arguments.

Input
Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

robustperfOptions takes the following Name arguments:

Display

String specifying whether robustperf displays progress of mussv
computations.

• 'off' — Do not display progress.

• 'on' — Display progress. This setting overrides the silent ('s')
option in the Mussv string.

Default: 'off'

Sensitivity

String specifying whether robustperf computes the sensitivity of the
performance margin with respect to each individual uncertain element.
This element-by-element sensitivity provides an indication of which
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elements the performance margin is most sensitive to. Turning off the
element-by-element sensitivity calculation speeds up robustperf.

• 'on'— Compute the sensitivity for each uncertain element.

• 'off'— Do not compute the sensitivity for each uncertain element.

Default: 'on'

VaryUncertainty

Percentage variation of uncertainty for computing sensitivity. The
sensitivity estimate uses a finite difference calculation.

Default: 25

Mussv

Option string for the mussv calculation that robustperf performs. See
mussv for the available options.

Default: '' (default behavior of mussv)

Output
Arguments

options

Option set containing the specified options for the robustperf
command.

Examples Create an options set for a robustperf calculation that displays the
progress of the mussv calculation. Also, turn off the element-by-element
sensitivity calculation.

options = robustperfOptions('Display','on','Sensitivity','off');

Alternatively, use dot notation to set the values of options.

options = robustperfOptions;
options.Display = 'on';
options.Sensitivity = 'off';
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See Also robustperf
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Purpose Calculate robust stability margins of uncertain multivariable system

Syntax [stabmarg,destabunc,report,info] = robuststab(sys)
[stabmarg,destabunc,report,info] = robuststab(sys,opt)

Description A nominally stable uncertain system is generally unstable for specific
values of its uncertain elements. Determining the values of the
uncertain elements closest to their nominal values for which instability
occurs is a robust stability calculation.

If the uncertain system is stable for all values of uncertain elements
within their allowable ranges (ranges for ureal, norm bound or
positive-real constraint for ultidyn, radius for ucomplex, weighted ball
for ucomplexm), the uncertain system is robustly stable. Conversely, if
there is a combination of element values that cause instability, and
all lie within their allowable ranges, then the uncertain system is not
robustly stable.

robuststab computes the margin of stability robustness for an
uncertain system. A stability robustness margin greater than 1
means that the uncertain system is stable for all values of its modeled
uncertainty. A stability robustness margin less than 1 implies that
certain allowable values of the uncertain elements, within their
specified ranges, lead to instability.

Numerically, a margin of 0.5 (for example) implies two things: the
uncertain system remains stable for all values of uncertain elements
that are less than 0.5 normalized units away from their nominal
values and, there is a collection of uncertain elements that are less
than or equal to 0.5 normalized units away from their nominal values
that results in instability. Similarly, a margin of 1.3 implies that the
uncertain system remains stable for all values of uncertain elements up
to 30% outside their modeled uncertain ranges. See actual2normalized
for converting between actual and normalized deviations from the
nominal value of an uncertain element.

As with other uncertain-system analysis tools, only bounds on the exact
stability margin are computed. The exact robust stability margin is
guaranteed to lie in between these upper and lower bounds.
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The computation used in robuststab is a frequency-domain calculation,
which determines whether poles can migrate (due to variability of the
uncertain atoms) across the stability boundary (imaginary axis for
continuous-time, unit circle for discrete-time). Coupled with stability of
the nominal system, determining that no migration occurs constitutes
robust stability. If the input system sys is a ufrd, then the analysis is
performed on the frequency grid within the ufrd. Note that the stability
of the nominal system is not verified by the computation. If the input
system sys is a uss, then the stability of the nominal system is first
checked, an appropriate frequency grid is generated (automatically),
and the analysis performed on that frequency grid. In all discussion
that follows, N denotes the number of points in the frequency grid.

Basic Syntax

Suppose sys is a ufrd or uss with M uncertain elements. The results of

[stabmarg,destabunc,Report] = robuststab(sys)

are that stabmarg is a structure with the following fields

Field Description

LowerBound Lower bound on stability margin, positive scalar. If greater
than 1, then the uncertain system is guaranteed stable for all
values of the modeled uncertainty. If the nominal value of the
uncertain system is unstable, then stabmarg.UpperBound
and stabmarg.LowerBound both equal 0.

UpperBound Upper bound on stability margin, positive scalar. If less than
1, the uncertain system is not stable for all values of the
modeled uncertainty.

DestabilizingFrequency The critical value of frequency at which instability occurs,
with uncertain elements closest to their nominal values. At
a particular value of uncertain elements (see destabunc
below), the poles migrate across the stability boundary
(imaginary-axis in continuous-time systems, unit-disk
in discrete-time systems) at the frequency given by
DestabilizingFrequency.

3-313



robuststab

destabunc is a structure of values of uncertain elements, closest to
nominal, that cause instability. There are M field names, which
are the names of uncertain elements of sys. The value of each
field is the corresponding value of the uncertain element, such
that when jointly combined, lead to instability. The command
pole(usubs(sys,destabunc)) shows the instability. If A is an
uncertain element of sys, then

actual2normalized(destabunc.A,sys.Uncertainty.A)

will be less than or equal to UpperBound, and for at least one uncertain
element of sys, this normalized distance will be equal to UpperBound,
proving that UpperBound is indeed an upper bound on the robust
stability margin.

Report is a text description of the arguments returned by robuststab.

If sys is an array of uncertain models, the outputs are struct arrays
whose entries correspond to each model in the array.

Examples Construct a feedback loop with a second-order plant and a PID
controller with approximate differentiation. The second-order plant has
frequency-dependent uncertainty, in the form of additive unmodeled
dynamics, introduced with an ultidyn object and a shaping filter.

robuststab is used to compute the stability margins of the closed-loop
system with respect to the plant model uncertainty.

P = tf(4,[1 .8 4]);
delta = ultidyn('delta',[1 1],'SampleStateDim',5);
Pu = P + 0.25*tf([1],[.15 1])*delta;
C = tf([1 1],[.1 1]) + tf(2,[1 0]);
S = feedback(1,Pu*C);
[stabmarg,destabunc,report,info] = robuststab(S);

You can view the stabmarg variable.

stabmarg
stabmarg =
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UpperBound: 0.8181
LowerBound: 0.8181

DestabilizingFrequency: 9.1321

As the margin is less than 1, the closed-loop system is not stable for
plant models covered by the uncertain model Pu. There is a specific
plant within the uncertain behavior modeled by Pu (actually about 82%
of the modeled uncertainty) that leads to closed-loop instability, with
the poles migrating across the stability boundary at 9.1 rads/s.

The report variable is specific, giving a plain-language version of the
conclusion.

report
report =
Uncertain System is NOT robustly stable to modeled uncertainty.
-- It can tolerate up to 81.8% of modeled uncertainty.
-- A destabilizing combination of 81.8% the modeled uncertainty

exists, causing an instability at 9.13 rad/s.
-- Sensitivity with respect to uncertain element ...

'delta' is 100%. Increasing 'delta' by 25% leads to a
25% decrease in the margin.

Because the problem has only one uncertain element, the stability
margin is completely determined by this element, and hence the margin
exhibits 100% sensitivity to this uncertain element.

You can verify that the destabilizing value of delta is indeed about 0.82
normalized units from its nominal value.

actual2normalized(S.Uncertainty.delta,destabunc.delta)
ans =

0.8181

Use usubs to substitute the specific value into the closed-loop system.
Verify that there is a closed-loop pole near j9.1, and plot the unit-step
response of the nominal closed-loop system, as well as the unstable
closed-loop system.
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Sbad = usubs(S,destabunc);
pole(Sbad)
ans =

1.0e+002 *
-3.2318
-0.2539
-0.0000 + 0.0913i
-0.0000 - 0.0913i
-0.0203 + 0.0211i
-0.0203 - 0.0211i
-0.0106 + 0.0116i
-0.0106 - 0.0116i

step(S.NominalValue,'r--',Sbad,'g',4);

Finally, as an ad-hoc test, set the gain bound on the uncertain delta to
0.81 (slightly less than the stability margin). Sample the closed-loop
system at 100 values, and compute the poles of all these systems.

S.Uncertainty.delta.Bound = 0.81;
S100 = usample(S,100);
p100 = pole(S100);
max(real(p100(:)))
ans =
-6.4647e-007

As expected, all poles have negative real parts.

Basic Syntax with Fourth Output Argument

A fourth output argument yields more specialized information,
including sensitivities and frequency-by-frequency information.

[StabMarg,Destabunc,Report,Info] = robuststab(sys)

In addition to the first 3 output arguments, described previously, Info
is a structure with the following fields
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Field Description

Sensitivity A struct with M fields, Field names are names of uncertain
elements of sys. Values of fields are positive, each the local
sensitivity of the overall stability margin to that element’s
uncertainty range. For instance, a value of 25 indicates
that if the uncertainty range is enlarged by 8%, then the
stability margin should drop by about 2% (25% of 8). If the
Sensitivity property of the robuststabOptions object is
'off', the values are set to NaN.

Frequency N-by-1 frequency vector associated with analysis.

BadUncertainValues N-by-1 struct array containing the destabilizing uncertain
element values at each frequency.

MussvBnds A 1-by-2 frd, with upper and lower bounds from mussv.
The (1,1) entry is the µ-upper bound (corresponds to
stabmarg.LowerBound) and the (1,2) entry is the µ-lower
bound (for stabmarg.UpperBound).

MussvInfo Structure of compressed data from mussv.

Specifying Additional Options

Use robuststabOptions to specify additional options for the
robuststab computation. For example, you can control what is
displayed during the computation, turning the sensitivity computation
on or off, set the step-size in the sensitivity computation, or control the
option argument used in the underlying call to mussv. For instance, you
can turn the display on, and the sensitivity calculation off by executing

opt = robuststabOptions('Sensitivity','off','Display','on');
[StabMarg,Destabunc,Report,Info] = robuststab(sys,opt)

See the robuststabOptions reference page for more information about
available options.
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Algorithms A rigorous robust stability analysis consists of two steps:

1 Verify that the nominal system is stable;

2 Verify that no poles cross the stability boundary as the uncertain
elements vary within their ranges.

Because the stability boundary is also associated with the frequency
response, the second step can be interpreted (and carried out) as a
frequency domain calculation. This amounts to a classical µ-analysis
problem.

The algorithm in robuststab follows this in spirit, with the following
limitations.

• If sys is a uss object, then the first requirement of stability of nominal
value is explicitly checked within robuststab. However, if sys is an
ufrd, then the verification of nominal stability from the nominal
frequency response data is not performed, and is instead assumed.

• In the second step (monitoring the stability boundary for the
migration of poles), rather than check all points on stability
boundary, the algorithm only detects migration of poles across the
stability boundary at the frequencies in info.Frequency.

See “Limitations” on page 3-319 for information about issues related to
migration detection.

The exact stability margin is guaranteed to be no larger than
UpperBound (some uncertain elements associated with this magnitude
cause instability – one instance is returned in the structure destabunc).
The instability created by destabunc occurs at the frequency value in
DestabilizingFrequency.

Similarly, the exact stability margin is guaranteed to be no smaller
than LowerBound. In other words, for all modeled uncertainty with
magnitude up to LowerBound, the system is guaranteed stable. These
bounds are derived using the upper bound for the structured singular
value, which is essentially optimally-scaled, small-gain theorem
analysis.
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Limitations Under most conditions, the robust stability margin at each frequency is
a continuous function of the problem data at that frequency. Because
the problem data, in turn, is a continuous function of frequency, it
follows that finite frequency grids are usually adequate in correctly
assessing robust stability bounds, assuming the frequency grid is dense
enough.

Nevertheless, there are simple examples that violate this. In some
problems, the migration of poles from stable to unstable only occurs at
a finite collection of specific frequencies (generally unknown to you).
Any frequency grid that excludes these critical frequencies (and almost
every grid will exclude them) will result in undetected migration and
misleading results, namely stability margins of ∞.

See Getting Reliable Estimates of Robustness Margins for more
information about circumventing the problem in an engineering-relevant
fashion.

See Also loopmargin | mussv | robuststabOptions | robustperf | wcgain |
wcsens | wcmargin
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Purpose Option set for robuststab

Syntax options = robuststabOptions
options = robuststabOptions(Name,Value,...)

Description options = robuststabOptions returns the default option set for the
robuststab command.

options = robuststabOptions(Name,Value,...) creates an option
set with the options specified by one or more Name,Value pair
arguments.

Input
Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

robuststabOptions takes the following Name arguments:

Display

String specifying whether robuststab displays progress of mussv
computations.

• 'off' — Do not display progress.

• 'on' — Display progress. This setting overrides the silent ('s')
option in the Mussv string.

Default: 'off'

Sensitivity

String specifying whether robuststab computes the sensitivity of the
stability margin with respect to each individual uncertain element.
This element-by-element sensitivity provides an indication of which
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elements the stability margin is most sensitive to. Turning off the
element-by-element sensitivity calculation speeds up robuststab.

• 'on'— Compute the sensitivity for each uncertain element.

• 'off'— Do not compute the sensitivity for each uncertain element.

Default: 'on'

VaryUncertainty

Percentage variation of uncertainty for computing sensitivity. The
sensitivity estimate uses a finite difference calculation.

Default: 25

Mussv

Option string for the mussv calculation that robustperf performs. See
mussv for the available options.

Default: '' (default behavior of mussv)

Output
Arguments

options

Option set containing the specified options for the robuststab
command.

Examples Create an options set for a robuststab calculation that displays the
progress of the mussv calculation. Also, turn off the element-by-element
sensitivity calculation.

options = robuststabOptions('Display','on','Sensitivity','off');

Alternatively, use dot notation to set the values of options.

options = robuststabOptions;
options.Display = 'on';
options.Sensitivity = 'off';
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See Also robuststab
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Purpose Balanced model truncation via Schur method

Syntax GRED = schurmr(G)
GRED = schurmr(G,order)
[GRED,redinfo] = schurmr(G,key1,value1,...)
[GRED,redinfo] = schurmr(G,order,key1,value1,...)

Description schurmr returns a reduced order model GRED of G and a struct array
redinfo containing the error bound of the reduced model and Hankel
singular values of the original system.

The error bound is computed based on Hankel singular values of G. For
a stable system Hankel singular values indicate the respective state
energy of the system. Hence, reduced order can be directly determined
by examining the system Hankel SV’s, σι.

With only one input argument G, the function will show a Hankel
singular value plot of the original model and prompt for model order
number to reduce.

This method guarantees an error bound on the infinity norm of the
additive error G-GRED ∞ for well-conditioned model reduced problems
[1]:

G Gred i
k

n
− ≤∞

+
∑2

1
σ

This table describes input arguments for schurmr.

Argument Description

G LTI model to be reduced (without any other inputs will
plot its Hankel singular values and prompt for reduced
order).

ORDER (Optional) an integer for the desired order of the
reduced model, or optionally a vector packed with
desired orders for batch runs
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A batch run of a serial of different reduced order models can be
generated by specifying order = x:y, or a vector of integers. By
default, all the anti-stable part of a system is kept, because from control
stability point of view, getting rid of unstable state(s) is dangerous to
model a system.

'MaxError' can be specified in the same fashion as an alternative for '
ORDER '. In this case, reduced order will be determined when the sum of
the tails of the Hankel sv’s reaches the 'MaxError'.

Argument Value Description

'MaxError' A real
number or
a vector of
different
errors

Reduce to achieve H∞ error.

When present, 'MaxError'overides
ORDER input.

'Weights' {Wout,Win}
cell array

Optimal 1x2 cell array of LTI weights
Wout (output) and Win (input); default
is both identity; Weights must be
invertible.

'Display' 'on' or
'off'

Display Hankel singular plots (default
'off').

'Order' Integer,
vector or cell
array

Order of reduced model. Use only if not
specified as 2nd argument.

Weights on the original model input and/or output can make the model
reduction algorithm focus on some frequency range of interests. But
weights have to be stable, minimum phase and invertible.

This table describes output arguments.
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Argument Description

GRED LTI reduced order model. Becomes multi-dimensional
array when input is a serial of different model order
array.

REDINFO A STRUCT array with 3 fields:

• REDINFO.ErrorBound

• REDINFO.StabSV

• REDINFO.UnstabSV

G can be stable or unstable. G and GRED can be either continuous or
discrete.

Algorithms Given a state space (A,B,C,D) of a system and k, the desired reduced
order, the following steps will produce a similarity transformation to
truncate the original state-space system to the kth order reduced model
[16].

1 Find the controllability and observability grammians P and Q.

2 Find the Schur decomposition for PQ in both ascending and
descending order, respectively,

V PQV

V PQV
n
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T
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n
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⎤
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1

1

0
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0
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3 Find the left/right orthonormal eigen-bases of PQ associated with the
kth big Hankel singular values.
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V V VA R SMALL L BIG= [ , ], ,

 

4 Find the SVD of (VTL,BIG VR,BIG) = U Σ VT

V V VD R BIG L SMALL= [ , ], ,

 

5 Form the left/right transformation for the final kth order reduced
model

SL,BIG = V L,BIG UΣ(1:k,1:k)
–½

SR,BIG = VR,BIGVΣ(1:k,1:k)
–½

6 Finally,
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The proof of the Schur balance truncation algorithm can be found in [2].

Examples Given a continuous or discrete, stable or unstable system, G, the
following commands can get a set of reduced order models based on
your selections:

rand('state',1234); randn('state',5678);G = rss(30,5,4);
[g1, redinfo1] = schurmr(G); % display Hankel SV plot

% and prompt for order (try 15:20)
[g2, redinfo2] = schurmr(G,20);
[g3, redinfo3] = schurmr(G,[10:2:18]);
[g4, redinfo4] = schurmr(G,'MaxError',[0.01, 0.05]);
rand('state',12345); randn('state',6789);
wt1 = rss(6,5,5); wt1.d = eye(5)*2;
wt2 = rss(6,4,4); wt2.d = 2*eye(4);
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[g5, redinfo5] = schurmr(G, [10:2:18], 'weight',{wt1,wt2});
for i = 1:5

figure(i); eval(['sigma(G,g' num2str(i) ');']);
end

References [1] K. Glover, “All Optimal Hankel Norm Approximation of Linear
Multivariable Systems, and Their L∝- error Bounds,” Int. J. Control,
vol. 39, no. 6, pp. 1145-1193, 1984.

[2] M. G. Safonov and R. Y. Chiang, “A Schur Method for Balanced
Model Reduction,” IEEE Trans. on Automat. Contr., vol. 34, no. 7, July
1989, pp. 729-733.

See Also reduce | balancmr | bstmr | ncfmr | hankelmr | hankelsv
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Purpose Compute L2 norm of continuous-time system in feedback with
discrete-time system

Syntax [gaml,gamu] = sdhinfnorm(sdsys,k)
[gaml,gamu] = sdhinfnorm(sdsys,k,delay)
[gaml,gamu] = sdhinfnorm(sdsys,k,delay,tol)

Description [gaml,gamu] = sdhinfnorm(sdsys,k) computes the L2 induced norm of
a continuous-time LTI plant, sdsys, in feedback with a discrete-time
controller, k, connected through an ideal sampler and a zero-order
hold (see figure below). sdsys must be strictly proper, such that the
constant feedback gain must be zero. The outputs, gamu and gaml, are
upper and lower bounds on the induced L2 norm of the sampled-data
closed-loop system.

[gaml,gamu] = sdhinfnorm(sdsys,k,h,delay) includes the input
argument delay. delay is a nonnegative integer associated with the
number of computational delays of the controller. The default value of
the delay is 0.

[gaml,gamu] = sdhinfnorm(sdsys,k,h,delay,tol) includes the input
argument, tol, which defines the difference between upper and lower
bounds when search terminates. The default value of tol is 0.001.

Examples Consider an open-loop, continuous-time transfer function p =
30/s(s+30) and a continuous-time controller k = 4/(s+4). The
closed-loop continuous-time system has a peak magnitude across
frequency of 1.
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p = ss(tf(30,[1 30])*tf([1],[1 0]));
k = ss(tf(4,[1 4]));
cl = feedback(p,k);
norm(cl,'inf')
ans =

1

Initially the controller is to be implemented at a sample rate of 1.5 Hz.
The sample-data norm of the closed-loop system with the discrete-time
controller is 1.0.

kd = c2d(k,0.75,'zoh');
[gu,gl] = sdhinfnorm([1; 1]*p*[1 1],-kd);
[gu gl]
ans =

3.7908 3.7929

Because of the large difference in norm between the continuous-time
and sampled-data closed-loop system, the sample rate of the controller
is increased from 1.5 Hz to 5 Hz. The sample-data norm of the new
closed-loop system is 3.79.

kd = c2d(k,0.2,'zoh');
[gu,gl] = sdhinfnorm([1; 1]*p*[1 1],-kd);
[gu gl]
ans =

1.0044 1.0049

Algorithms sdhinfnorm uses variations of the formulas described in the Bamieh
and Pearson paper to obtain an equivalent discrete-time system. (These
variations are done to improve the numerical conditioning of the
algorithms.) A preliminary step is to determine whether the norm of the
continuous-time system over one sampling period without control is less
than the given value. This requires a search and is, computationally, a
relatively expensive step.
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References Bamieh, B.A., and J.B. Pearson, “A General Framework for Linear
Periodic Systems with Applications to Sampled-Data Control,” IEEE
Transactions on Automatic Control, Vol. AC–37, 1992, pp. 418-435.

See Also gapmetric | hinfsyn | norm | sdhinfsyn | sdlsim
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Purpose Compute H∞ controller for sampled-data system

Syntax [K,GAM]=sdhinfsyn(P,NMEAS,NCON)
[K,GAM]=sdhinfsyn(P,NMEAS,NCON, KEY1,VALUE1,KEY2,VALUE2,...)

Description sdhinfsyn controls a continuous-time LTI system P with a discrete-time
controller K. The continuous-time LTI plant P has a state-space
realization partitioned as follows:

P
A B B

C
C

=
⎡

⎣
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⎢
⎢

⎤

⎦

⎥
⎥
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1 2

1

2

0 0
0 0

where the continuous-time disturbance inputs enter through B1,
the outputs from the controller are held constant between sampling
instants and enter through B2, the continuous-time errors (to be kept
small) correspond to the C1 partition, and the output measurements
that are sampled by the controller correspond to the C2 partition. B2
has column size ncon and C2 has row size nmeas. Note that the D
matrix must be zero.

sdhinfsyn synthesizes a discrete-time LTI controller K to achieve a
given norm (if possible) or find the minimum possible norm to within
tolerance TOLGAM.
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Similar to hinfsyn, the function sdhinfsyn employs a γ iteration.
Given a high and low value of γ, GMAX and GMIN, the bisection method is
used to iterate on the value of γ in an effort to approach the optimal H∞
control design. If GMAX = GMIN, only one γ value is tested. The stopping
criterion for the bisection algorithm requires that the relative difference
between the last γ value that failed and the last γ value that passed
be less than TOLGAM.

Input arguments

P LTI plant

NMEAS Number of measurements output to controller

NCON Number of control inputs

Optional input arguments (KEY, VALUE) pairs are similar to hinfsyn,
but with additional KEY values 'Ts' and 'DELAY'.

KEY VALUE Meaning

'GMAX' real Initial upper bound on GAM
(default=Inf)

'GMIN' real Initial lower bound on GAM (default=0)

'TOLGAM' real Relative error tolerance for GAM
(default=.01)

'Ts' real (Default=1) sampling period of the
controller to be designed

'DELAY' integer (Default=0) a nonnegative integer
giving the number of sample periods
delay for the control computation

'DISPLAY' 'off'

'on'

(Default) no command window display,
or the command window displays
synthesis progress information

Output arguments
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K H∞ controller

GAM Final γ value of H∞ cost achieved

Algorithms sdhinfsyn uses a variation of the formulas described in the Bamieh
and Pearson paper [1] to obtain an equivalent discrete-time system.
(This is done to improve the numerical conditioning of the algorithms.)
A preliminary step is to determine whether the norm of the
continuous-time system over one sampling period without control is less
than the given γ-value. This requires a search and is computationally a
relatively expensive step.

References [1] Bamieh, B.A., and J.B. Pearson, “A General Framework for Linear
Periodic Systems with Applications to Sampled-Data Control,” IEEE
Transactions on Automatic Control, Vol. AC–37, 1992, pp. 418-435.

See Also norm | hinfsyn | sdhinfnorm
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Purpose Time response of sampled-data feedback system

Syntax sdlsim(p,k,w,t,tf)
sdlsim(p,k,w,t,tf,x0,z0)
sdlsim(p,k,w,t,tf,x0,z0,int)
[vt,yt,ut,t] = sdlsim(p,k,w,t,tf)
[vt,yt,ut,t] = sdlsim(p,k,w,t,tf,x0,z0,int)

Description sdlsim(p,k,w,t,tf) plots the time response of the hybrid feedback
system. lft(p,k), is forced by the continuous input signal described
by w and t (values and times, as in lsim). p must be a continuous-time
LTI system, and k must be discrete-time LTI system with a specified
sampling time (the unspecified sampling time –1 is not allowed). The
final time is specified with tf.

sdlsim(p,k,w,t,tf,x0,z0) specifies the initial state vector x0 of p, and
z0 of k, at time t(1).

sdlsim(p,k,w,t,tf,x0,z0,int) specifies the continuous-time
integration step size int. sdlsim forces int = (k.Ts)/N int where
N>4 is an integer. If any of these optional arguments is omitted, or
passed as empty matrices, then default values are used. The default
value for x0 and z0 is zero. Nonzero initial conditions are allowed for p
(and/or k) only if p (and/or k) is an ss object.

If p and/or k is an LTI array with consistent array dimensions, then the
time simulation is performed pointwise across the array dimensions.

[vt,yt,ut,t] = sdlsim(p,k,w,t,tf) computes the continuous-time
response of the hybrid feedback system lft(p,k) forced by the
continuous input signal defined by w and t (values and times, as in
lsim). pmust be a continuous-time system, and kmust be discrete-time,
with a specified sampling time (the unspecified sampling time –1 is not
allowed). The final time is specified with tf. The outputs vt, yt and
ut are 2-by-1 cell arrays: in each the first entry is a time vector, and the
second entry is the signal values. Stored in this manner, the signal vt
is plotted by using one of the following commands:

plot(vt{1},vt{2})
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plot(vt{:})

Signals yt and ut are respectively the input to k and output of k.

If p and/or k are LTI arrays with consistent array dimensions, then the
time simulation is performed pointwise across the array dimensions.
The outputs are 2-by-1-by-array dimension cell arrays. All responses
can be plotted simultaneously, for example, plot(vt).

[vt,yt,ut,t] = sdlsim(p,k,w,t,tf,x0,z0,int) The optional
arguments are int (integration step size), x0 (initial condition for p),
and z0 (initial condition for k). sdlsim forces int = (k.Ts)/N, where
N>4 is an integer. If any of these arguments is omitted, or passed as
empty matrices, then default values are used. The default value for x0
and z0 is zero. Nonzero initial conditions are allowed for p (and/or k)
only if p (and/or k) is an ss object.

Examples To illustrate the use of sdlsim, consider the application of a discrete
controller to an integrator with near integrator. A continuous plant
and a discrete controller are created. A sample and hold equivalent of
the plant is formed and the discrete closed-loop system is calculated.
Simulating this with lsim gives the system response at the sample
points. sdlsim is then used to calculate the intersample behavior.

P = tf(1,[1, 1e-5,0]);
T = 1.0/20;
C = ss([-1.5 T/4; -2/T -.5],[ .5 2;1/T 1/T],...

[-1/T^2 -1.5/T], [1/T^2 0],T);
Pd = c2d(P,T,'zoh');

The closed-loop digital system is now set up. You can use sysic to
construct the interconnected feedback system.

systemnames = 'Pd C';
inputvar = '[ref]';
outputvar = '[Pd]';
input_to_Pd = '[C]';
input_to_C = '[ref ; Pd]';
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sysoutname = 'dclp';
cleanupsysic = 'yes';
sysic;

lsim is used to simulate the digital step response.

[yd,td] = step(dclp,20*T);

The continuous interconnection is set up and the sampled data response
is calculated with sdlsim.

M = [0,1;1,0;0,1]*blkdiag(1,P);
t = [0:.01:1]';
u = ones(size(t));
y1 = sdlsim(M,C,u,t);
plot(td,yd,'r*',y1{:},'b-')
axis([0,1,0,1.5])
xlabel('Time: seconds')
title('Step response: discrete (*), &continuous')
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You can see the effect of a nonzero initial condition in the
continuous-time system. Note how examining the system at only the
sample points will underestimate the amplitude of the overshoot.

y2 = sdlsim(M,C,u,t,1,0,[0.25;0]);
plot(td,yd,'r*',y1{:},'b-',y2{:},'g--')
axis([0,1,0,1.5])
xlabel('Time: seconds')
title('Step response: non zero initial condition')

3-337



sdlsim

Finally, you can examine the effect of a sinusoidal disturbance at the
continuous-time plant output. This controller is not designed to reject
such a disturbance and the system does not contain antialiasing filters.
Simulating the effect of antialiasing filters is easily accomplished by
including them in the continuous interconnection structure.

M2 = [0,1,1;1,0,0;0,1,1]*blkdiag(1,1,P);
t = [0:.001:1]';
dist = 0.1*sin(41*t);
u = ones(size(t));
[y3,meas,act] = sdlsim(M2,C,[u dist],t,1);
plot(y3{:},'-',t,dist,'b--',t,u,'g-.')
xlabel('Time: seconds')
title('Step response: disturbance (dashed) & output (solid)')
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Algorithms sdlsim oversamples the continuous-time, N times the sample rate of
the controller k.

See Also gapmetric | hinfsyn | norm | sdhinfnorm | sdhinfsyn | sysic
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Purpose State-space sector bilinear transformation

Syntax [G,T] = sectf(F,SECF,SECG)

Description [G,T] = sectf(F,SECF,SECG) computes a linear fractional transform
T such that the system lft(F,K) is in sector SECF if and only if the
system lft(G,K) is in sector SECG where

G=lft(T,F,NU,NY)

where NU and NY are the dimensions of uT2 and yT2, respectively—see
the following figure.
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Sector transform G=lft(T,F,NU,NY).

sectf are used to transform general conic-sector control system
performance specifications into equivalent H∞-norm performance
specifications.

Input Arguments

F LTI
state-space
plant

SECG,
SECF:

Conic Sector:
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Input Arguments

[-1,1] or
[-1;1] y u2 2≤

[0,Inf] or
[0;Inf] 0 ≤ ∗[ ]Re y u

[A,B] or
[A;B] 0 ≥ −( ) ∗ −( )⎡⎣ ⎤⎦Re y Au y Bu

[a,b] or
[a;b] 0 ≥ −( ) ∗ −( )⎡⎣ ⎤⎦Re ( ) ( )y diag a u y diag b u

S
0 11 12 21 22≥ +( ) ∗ +( )⎡⎣ ⎤⎦Re S u S y S u S y

S
0 11 12 21 22≥ +( ) ∗ +( )⎡⎣ ⎤⎦Re S u S y S u S y

where A,B are scalars in [–∞, ∞] or square matrices; a,b are
vectors; S=[S11 S12;S21,S22] is a square matrix whose blocks
S11,S12,S21,S22 are either scalars or square matrices; S is a two-port
system S=mksys(a,b1,b2,...,'tss') with transfer function

S s
S s S s
S s S s

( )
( ) ( )
( ) ( )

=
⎡

⎣
⎢

⎤

⎦
⎥

11 12

21 22

Output
Arguments

Description

G Transformed plant G(s)=lftf(T,F)

T LFT sector transform, maps conic sector SECF into
conic sector SECG
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Output
Variables

G The transformed plant G(s) = lftf(T,F):

T The linear fractional transformation T(s) = T

Examples The statement G(jω) inside sector[–1, 1] is equivalent to the H∞
inequality

sup ( )
ω

σ ωG j G( ) = ≤∞ 1

Given a two-port open-loop plant P(s) := P, the command P1 =
sectf(P,[0,Inf],[-1,1]) computes a transformed P1(s):= P1 such
that if lft(G,K) is inside sector[–1, 1] if and only if lft(F,K) is
inside sector[0, ∞]. In other words, norm(lft(G,K),inf)<1 if and only if
lft(F,K) is strictly positive real. See Example of Sector Transform
on page 3-344.

Sector Transform Block Diagram

Here is a simple example of the sector transform.

P s
s

P s
s

( ) , ( ) , .=
+

∈ −[ ] → = + ∈ ∞[ ]1
1

1 1
2

2
01sector sector

You can compute this by simply executing the following commands:

P = ss(tf(1,[1 1]));
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P1 = sectf(P,[-1,1],[0,Inf]);

The Nyquist plots for this transformation are depicted in Example of
Sector Transform on page 3-344. The condition P1(s) inside [0, ∞] implies
that P1(s) is stable and P1(jω) is positive real, i.e.,

P j P j1 1 0∗ + ≥ ∀( ) ( )ω ω ω   

Example of Sector Transform

Algorithms sectf uses the generalization of the sector concept of [3] described by
[1]. First the sector input data Sf= SECF and Sg=SECG is converted
to two-port state-space form; non-dynamical sectors are handled with
empty a, b1, b2, c1, c2 matrices. Next the equation

S s
u

y
S s

u

yg
g

g
f

f

f
( ) ( )1

1

1

1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

is solved for the two-port transfer function T(s) from u yg f1 1
to u yf g1 1

.
Finally, the function lftf is used to compute G(s) as G = lftf(T,F).

Limitations A well-posed conic sector must have det(B–A)≠ 0 or
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det .
s s
s s
11 12

21 22
0

⎡

⎣
⎢

⎤

⎦
⎥

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ ≠

Also, you must have dim( ) dim( )u yF F1 1= since sectors are only defined
for square systems.

References [1] Safonov, M.G., Stability and Robustness of Multivariable Feedback
Systems. Cambridge, MA: MIT Press, 1980.

[2] Safonov, M.G., E.A. Jonckheere, M. Verma and D.J.N. Limebeer,
“Synthesis of Positive Real Multivariable Feedback Systems,” Int. J.
Control, vol. 45, no. 3, pp. 817-842, 1987.

[3] Zames, G., “On the Input-Output Stability of Time-Varying
Nonlinear Feedback Systems ≥— Part I: Conditions Using Concepts of
Loop Gain, Conicity, and Positivity,” IEEE Trans. on Automat. Contr.,
AC-11, pp. 228-238, 1966.

See Also lft | hinfsyn
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Purpose Initialize description of LMI system

Syntax setlmis(lmi0)

Description Before starting the description of a new LMI system with lmivar and
lmiterm, type

setlmis([])

to initialize its internal representation.

To add on to an existing LMI system, use the syntax

setlmis(lmi0)

where lmi0 is the internal representation of this LMI system.
Subsequent lmivar and lmiterm commands will then add new variables
and terms to the initial LMI system lmi0.

See Also getlmis | lmivar | lmiterm | newlmi

3-346



setmvar

Purpose Instantiate matrix variable and evaluate all LMI terms involving this
matrix variable

Syntax mnewsys = setmvar(lmisys,X,Xval)

Description setmvar sets the matrix variable X with identifier X to the value Xval.
All terms involving X are evaluated, the constant terms are updated
accordingly, and X is removed from the list of matrix variables. A
description of the resulting LMI system is returned in newsys.

The integer X is the identifier returned by lmivar when X is declared.
Instantiating X with setmvar does not alter the identifiers of the
remaining matrix variables.

The function setmvar is useful to freeze certain matrix variables and
optimize with respect to the remaining ones. It saves time by avoiding
partial or complete redefinition of the set of LMI constraints.

Examples Consider the system

x˙ = Ax + Bu

and the problem of finding a stabilizing state-feedback law u = Kx
where K is an unknown matrix.

By the Lyapunov Theorem, this is equivalent to finding P > 0 and
K such that

(A + BK)P + P(A + BKT) + I < 0.

With the change of variable Y := KP, this condition reduces to the LMI

AP + PAT + BY + YTBT + I < 0.

This LMI is entered by the commands

n = size(A,1) % number of states
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ncon = size(B,2) % number of inputs

setlmis([])
P = lmivar(1,[n 1]) % P full symmetric
Y = lmivar(2,[ncon n]) % Y rectangular

lmiterm([1 1 1 P],A,1,'s') % AP+PA'
lmiterm([1 1 1 Y],B,1,'s') % BY+Y'B'
lmiterm([1 1 1 0],1) % I
lmis = getlmis

To find out whether this problem has a solution K for the particular
Lyapunov matrix P = I, set P to I by typing

news = setmvar(lmis,P,1)

The resulting LMI system news has only one variable Y = K. Its
feasibility is assessed by calling feasp:

[tmin,xfeas] = feasp(news)
Y = dec2mat(news,xfeas,Y)

The computed Y is feasible whenever tmin < 0.

See Also evallmi | delmvar
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Purpose Return left and right sides of LMI after evaluation of all variable terms

Syntax [lhs,rhs] = showlmi(evalsys,n)

Description For given values of the decision variables, the function evallmi
evaluates all variable terms in a system of LMIs. The left and right
sides of the n-th LMI are then constant matrices that can be displayed
with showlmi. If evalsys is the output of evallmi, the values lhs and
rhs of these left and right sides are given by

[lhs,rhs] = showlmi(evalsys,n)

An error is issued if evalsys still contains variable terms.

Examples See the description of evallmi.

See Also evallmi | setmvar
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Purpose Simplify representation of uncertain object

Syntax B = simplify(A)
B = simplify(A,'full')
B = simplify(A,'basic')
B = simplify(A,'class')

Description B = simplify(A) performs model-reduction-like techniques to detect
and eliminate redundant copies of uncertain elements. Depending
on the result, the class of B may be lower than A. The AutoSimplify
property of each uncertain element in A governs what reduction
methods are used. After reduction, any uncertain element which does
not actually affect the result is deleted from the representation.

B = simplify(A,'full') overrides all uncertain element’s
AutoSimplify property, and uses 'full' reduction techniques.

B = simplify(A,'basic') overrides all uncertain element’s
AutoSimplify property, and uses 'basic' reduction techniques.

B = simplify(A,'class') does not perform reduction. However, any
uncertain elements in A with zero occurences are eliminated, and the
class of B may be lower than the class of A.

Examples Create a simple umat with a single uncertain real parameter. Select
specific elements, note that result remains in class umat. Simplify those
same elements, and note that class changes.

p1 = ureal('p1',3,'Range',[2 5]);
L = [2 p1];
L(1)
UMAT: 1 Rows, 1 Columns
L(2)
UMAT: 1 Rows, 1 Columns

p1: real, nominal = 3, range = [2 5], 1 occurrence
simplify(L(1))
ans =

2
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simplify(L(2))
Uncertain Real Parameter: Name p1, NominalValue 3, Range [2 5]

Create four uncertain real parameters, with a default value of
AutoSimplify ('basic'), and define a high order polynomial [1].

m = ureal('m',125000,'Range',[100000 150000]);
xcg = ureal('xcg',.23,'Range',[.15 .31]);
zcg = ureal('zcg',.105,'Range',[0 .21]);
va = ureal('va',80,'Range',[70 90]);
cw = simplify(m/(va*va)*va,'full')
UMAT: 1 Rows, 1 Columns

m: real, nominal = 1.25e+005, range = [100000 150000],
1 occurrence

va: real, nominal = 80, range = [70 90], 1 occurrence
cw = m/va;
fac2 = .16726*xcg*cw*cw*zcg - .17230*xcg*xcg*cw ...

-3.9*xcg*cw*zcg - .28*xcg*xcg*cw*cw*zcg ...
-.07*xcg*xcg*zcg + .29*xcg*xcg*cw*zcg ...
+ 4.9*xcg*cw - 2.7*xcg*cw*cw ...
+.58*cw*cw - 0.25*xcg*xcg - 1.34*cw ...
+100.1*xcg -14.1*zcg - 1.91*cw*cw*zcg ...
+1.12*xcg*zcg + 24.6*cw*zcg ...
+.45*xcg*xcg*cw*cw - 46.85

UMAT: 1 Rows, 1 Columns
m: real, nominal = 1.25e+005, range = [100000 150000],

18 occurrences
va: real, nominal = 80, range = [70 90], 8 occurrences

xcg: real, nominal = 0.23, range = [0.15 0.31], 18 occurrences
zcg: real, nominal = 0.105, range = [0 0.21], 1 occurrence

The result of the high-order polynomial is an inefficient representation
involving 18 copies of m, 8 copies of va, 18 copies of xcg and 1 copy of
zcg. Simplify the expression, using the 'full' simplification algorithm

fac2s = simplify(fac2,'full')
UMAT: 1 Rows, 1 Columns
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m: real, nominal = 1.25e+005, range = [100000 150000],
4 occurrences

va: real, nominal = 80, range = [70 90], 4 occurrences
xcg: real, nominal = 0.23, range = [0.15 0.31], 2 occurrences
zcg: real, nominal = 0.105, range = [0 0.21], 1 occurrence

which results in a much more economical representation.

Alternatively, change the AutoSimplify property of each parameter to
'full' before forming the polynomial.

m.AutoSimplify = 'full';
xcg.AutoSimplify = 'full';
zcg.AutoSimplify = 'full';
va.AutoSimplify = 'full';

You can form the polynomial, which immediately gives a low order
representation.

cw = m/va;
fac2f = .16726*xcg*cw*cw*zcg - .17230*xcg*xcg*cw ...

-3.9*xcg*cw*zcg - .28*xcg*xcg*cw*cw*zcg ...
-.07*xcg*xcg*zcg + .29*xcg*xcg*cw*zcg ...
+ 4.9*xcg*cw - 2.7*xcg*cw*cw ...
+.58*cw*cw - 0.25*xcg*xcg - 1.34*cw ...
+100.1*xcg -14.1*zcg - 1.91*cw*cw*zcg ...
+1.12*xcg*zcg + 24.6*cw*zcg ...
+.45*xcg*xcg*cw*cw - 46.85

UMAT: 1 Rows, 1 Columns
m: real, nominal = 1.25e+005, range = [100000 150000],

4 occurrences
va: real, nominal = 80, range = [70 90], 4 occurrences

xcg: real, nominal = 0.23, range = [0.15 0.31], 2 occurrences
zcg: real, nominal = 0.105, range = [0 0.21], 1 occurrence

Create two real parameters, da and dx, and a 2-by-3 matrix, ABmat,
involving polynomial expressions in the two real parameters .
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da = ureal('da',0,'Range',[-1 1]);
dx = ureal('dx',0,'Range',[-1 1]);
a11 = -.32 + da*(.8089 + da*(-.987 + 3.39*da)) + .15*dx;
a12 = .934 + da*(.0474 - .302*da);
a21 = -1.15 + da*(4.39 + da*(21.97 - 561*da*da)) ...

+ dx*(9.65 - da*(55.7 + da*177));
a22 = -.66 + da*(1.2 - da*2.27) + dx*(2.66 - 5.1*da);
b1 = -0.00071 + da*(0.00175 - da*.00308) + .0011*dx;
b2 = -0.031 + da*(.078 + da*(-.464 + 1.37*da)) + .0072*dx;
ABmat = [a11 a12 b1;a21 a22 b2]
UMAT: 2 Rows, 3 Columns

da: real, nominal = 0, range = [-1 1], 19 occurrences
dx: real, nominal = 0, range = [-1 1], 2 occurrences

Use 'full' simplification to reduce the complexity of the description.

ABmatsimp = simplify(ABmat,'full')
UMAT: 2 Rows, 3 Columns

da: real, nominal = 0, range = [-1 1], 7 occurrences
dx: real, nominal = 0, range = [-1 1], 2 occurrences

Alternatively, you can set the parameter’s AutoSimplify property to
'full'.

da.AutoSimplify = 'full';
dx.AutoSimplify = 'full';

Now you can rebuild the matrix

a11 = -.32 + da*(.8089 + da*(-.987 + 3.39*da)) + .15*dx;
a12 = .934 + da*(.0474 - .302*da);
a21 = -1.15 + da*(4.39 + da*(21.97 - 561*da*da)) ...

+ dx*(9.65 - da*(55.7 + da*177));
a22 = -.66 + da*(1.2 - da*2.27) + dx*(2.66 - 5.1*da);
b1 = -0.00071 + da*(0.00175 - da*.00308) + .0011*dx;
b2 = -0.031 + da*(.078 + da*(-.464 + 1.37*da)) + .0072*dx;
ABmatFull = [a11 a12 b1;a21 a22 b2]
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UMAT: 2 Rows, 3 Columns
da: real, nominal = 0, range = [-1 1], 7 occurrences
dx: real, nominal = 0, range = [-1 1], 2 occurrences

Algorithms simplify uses heuristics along with one-dimensional model reduction
algorithms to partially reduce the dimensionality of the representation
of an uncertain matrix or system.

Limitations Multidimensional model reduction and realization theory are only
partially complete theories. The heuristics used by simplify are that -
heuristics. The order in which expressions involving uncertain elements
are built up, eg., distributing across addition and multiplication, can
affect the details of the representation (i.e., the number of occurences of
a ureal in an uncertain matrix). It is possible that simplify’s naive
methods cannot completely resolve these differences, so one may be
forced to work with “nonminimal” representations of uncertain systems.

References [1] Varga, A. and G. Looye, “Symbolic and numerical software tools
for LFT-based low order uncertainty modeling,” IEEE International
Symposium on Computer Aided Control System Design, 1999, pp. 5-11.

[2] Belcastro, C.M., K.B. Lim and E.A. Morelli, “Computer aided
uncertainty modeling for nonlinear parameter-dependent systems Part
II: F-16 example,” IEEE International Symposium on Computer Aided
Control System Design, 1999, pp. 17-23.

See Also umat | uss | ucomplex | ureal | uss
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Purpose Form skew-symmetric matrix

Syntax x = skewdec(m,n)

Description skewdec(m,n) forms the m-by-m skew-symmetric matrix

0 1 2
1 0 3
2 3 0

− − − −
+ − −
+ +

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
( ) ( )

( ) ( )
( ) ( )

n n
n n
n n







   

   

⎥⎥
⎥
⎥
⎥
⎥

This function is useful to define skew-symmetric matrix variables. In
this case, set n to the number of decision variables already used.

See Also decinfo | lmivar
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Purpose Slow and fast modes decomposition

Syntax [G1,G2] = slowfast(G,ns)

Description slowfast computes the slow and fast modes decompositions of a system
G(s) such that

G(s) = [G1(s)] + [G2(s)]

G(s) contains the N slowest modes (modes with the smallest absolute
value) of G.

[ ( )] : , , ,G s A B C D1 11 1 1 1= ( ) denotes the slow part of G(s). The slow poles
have low frequency and magnitude values.

[ ( )] : , , ,G s A B C D2 22 2 2 2= ( ) denotes the fast part. The fast poles have
high frequency and magnitude values.

The variable ns denotes the index where the modes will be split.

References M.G. Safonov, E.A. Jonckheere, M. Verma and D.J.N. Limebeer,
“Synthesis of Positive Real Multivariable Feedback Systems”, Int. J.
Control, vol. 45, no. 3, pp. 817-842, 1987.

See Also schur | modreal
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Purpose Remove singleton dimensions for umat objects

Syntax B = squeeze(A)

Description B = squeeze(A) returns an array B with the same elements as A but
with all the singleton dimensions removed. A singleton is a dimension
such that size(A,dim)==1. 2-D arrays are unaffected by squeeze so
that row vectors remain rows.

See Also permute | reshape
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Purpose Scale state/uncertainty while preserving uncertain input/output map
of uncertain system

Syntax usysout = ssbal(usys)
usysout = ssbal(usys,wc)
usysout = ssbal(usys,wc,FSflag)
usysout = ssbal(usys,wc,FSflag,BLTflag)

Description usysout = ssbal(usys) yields a system whose input/output and
uncertain properties are the same as usys, a uss object. The numerical
conditioning of usysout is usually better than that of usys, improving
the accuracy of additional computations performed with usysout.
usysout is a uss object. The balancing algorithm uses mussv to balance
the constant uncertain state-space matrices in discrete time. If usys is a
continuous-time uncertain system, the uncertain state-space is mapped
by using a bilinear transformation into discrete time for balancing.

usysout = ssbal(usys,wc) defines the critical frequency wc for the
bilinear prewarp transformation from continuous time to discrete time.
The default value of wc is 1 when the nominal uncertain system is
stable and 1.25*mxeig when it is unstable. mxeig corresponds to the
value of the real, most positive pole of usys.

usysout = ssbal(usys,wc,FSflag) sets the scaling flag FSflag to
handle repeated uncertain parameters. Setting FSflag=1 uses full
matrix scalings to balance the repeated uncertain parameter blocks.
FSflag=0, the default, uses a single, positive scalar to balance the
repeated uncertain parameter blocks.

usysout = ssbal(usys,wc,FSflag,BLTflag) sets the bilinear
transformation flag, BLTflag. By default, BLTflag=1 and transforms
the continuous-time system usys to a discrete-time system for
balancing. BLTflag=0 results in balancing the continuous-time
state-space data from usys. Note that if usys is a discrete-time system,
no bilinear transformation is performed.

ssbal does not work on an array of uncertain systems. An error
message is generated to alert you to this.
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Examples Consider a two-input, two-output, two-state uncertain system with two
real parameter uncertainties, p1 and p2.

p2=ureal('p2',-17,'Range',[-19 -11]);

p1=ureal('p1',3.2,'Percentage',0.43);

A = [-12 p1;.001 p2];

B = [120 -809;503 24];

C = [.034 .0076; .00019 2];

usys = ss(A,B,C,zeros(2,2))

USS: 2 States, 2 Outputs, 2 Inputs, Continuous System

p1: real, nominal = 3.2, variability = [-0.43 0.43]%, 1 occurrence

p2: real, nominal = -17, range = [-19 -11], 1 occurrence

usys.NominalValue

a =

x1 x2

x1 -12 3.2

x2 0.001 -17

b =

u1 u2

x1 120 -809

x2 503 24

c =

x1 x2

y1 0.034 0.0076

y2 0.00019 2

d =

u1 u2

y1 0 0

y2 0 0

Continuous-time model.

ssbal is used to balance the uncertain system usys.

usysout = ssbal(usys)
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USS: 2 States, 2 Outputs, 2 Inputs, Continuous System

p1: real, nominal = 3.2, variability = [-0.43 0.43]%,

1 occurrence

p2: real, nominal = -17, range = [-19 -11], 1 occurrence

usysout.NominalValue

a =

x1 x2

x1 -12 0.3302

x2 0.009692 -17

b =

u1 u2

x1 0.7802 -5.26

x2 31.7 1.512

c =

x1 x2

y1 5.229 0.1206

y2 0.02922 31.74

d =

u1 u2

y1 0 0

y2 0 0

Continuous-time model.

See Also canon | c2d | d2c | mussv | mussvextract | ss2ss
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Purpose Construct array by stacking uncertain matrices, models, or arrays

Syntax umatout = stack(arraydim,umat1,umat2,...)
usysout = stack(arraydim,usys1,usys2,...)

Description stack constructs an uncertain array by stacking uncertain matrices,
models, or arrays along array dimensions of an uncertain array.

umatout = stack(arraydim,umat1,umat2,...) produces an array
of uncertain matrices, umatout, by stacking (concatenating) the umat
matrices (or umat arrays) umat1, umat2,... along the array dimension
arraydim. All models must have the same number of columns and rows.
The column/row dimensions are not counted in the array dimensions.

umatout = stack(arraydim,usys1,usys2,...) produces an array of
uncertain models, ufrd or uss, or usysout, by stacking (concatenating)
the ufrd or uss matrices (or ufrd or uss arrays) usys1, usys2,... along
the array dimension arraydim. All models must have the same number
of columns and rows (the same input/output dimensions). Note that the
input/output dimensions are not considered for arrays.

Examples Consider usys1 and usys2, two single-input/single-output uss models:

zeta = ureal('zeta',1,'Range',[0.4 4]);
wn = ureal('wn',0.5,'Range',[0.3 0.7]);
P1 = tf(1,[1 2*zeta*wn wn^2]);
P2 = tf(zeta,[1 10]);

You can stack along the first dimension to produce a 2-by-1 uss array.

stack(1,P1,P1)
USS: 2 States, 1 Output, 1 Input, Continuous System [array, 2 x 1]

wn: real, nominal = 0.5, range = [0.3 0.7], 3 occurrences
zeta: real, nominal = 1, range = [0.4 4], 1 occurrence

You can stack along the second dimension to produce a 1-by-2 uss array.

stack(2,P1,P2) % produces a 1-by-2 USS array.
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USS: 2 States, 1 Output, 1 Input, Continuous System [array, 1 x 2]
wn: real, nominal = 0.5, range = [0.3 0.7], 3 occurrences

zeta: real, nominal = 1, range = [0.4 4], 1 occurrence

You can stack along the third dimension to produce a 1-by-1-by-2 uss
array.

stack(3,P1,P2) % produces a 1-by-1-by-2 USS array.
USS: 2 States, 1 Output, 1 Input, Continuous System
[array, 1 x 1 x 2]

wn: real, nominal = 0.5, range = [0.3 0.7], 3 occurrences
zeta: real, nominal = 1, range = [0.4 4], 1 occurrence

See Also append | blkdiag | horzcat | vertcat
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Purpose Form symmetric matrix

Syntax x = symdec(m,n)

Description symdec(m,n) forms an m-by-m symmetric matrix of the form

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

n n n
n n n
n n n

+ + +
+ + +
+ + +

⎡

⎣

1 2 4
2 3 5
4 5 6







   

   

⎢⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

This function is useful to define symmetric matrix variables. n is the
number of decision variables.

See Also decinfo
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Purpose Build interconnections of certain and uncertain matrices and systems

Syntax sysout = sysic

Description sysic requires that 3 variables with fixed names be present in the
calling workspace: systemnames, inputvar and outputvar.

systemnames is a char containing the names of the subsystems (double,
tf, zpk, ss, uss, frd, ufrd, etc) that make up the interconnection.
The names must be separated by spaces with no additional punctuation.
Each named variable must exist in the calling workspace.

inputvar is a char, defining the names of the external inputs to the
interconnection. The names are separated by semicolons, and the
entire list is enclosed in square brackets [ ]. Inputs can be scalar or
multivariate. For instance, a 3-component (x,y,z) force input can be
specified with 3 separate names, Fx, Fy, Fz. Alternatively, a single
name with a defined integer dimension can be specified, as in F{3}.
The order of names in inputvar determines the order of inputs in the
interconnection.

outputvar is a char, describing the outputs of the interconnection.
Outputs do not have names-they are simply linear combinations
of individual subsystem’s outputs and external inputs. Semicolons
delineate separate components of the interconnections outputs. Between
semicolons, signals can be added and subtracted, and multiplied by
scalars. For multivariable subsystems, arguments within parentheses
specify which subsystem outputs are to be used and in what order. For
instance, plant(2:4,1,9:11) specifies outputs 2,3,4,1,9,10,11 from
the subsystem plant. If a subsystem is listed in outputvar without
arguments, then all outputs from that subsystem are used.

sysic also requires that for every subsystem name
listed in systemnames, a corresponding variable,
input_to_ListedSubSystemName must exist in the calling
workspace. This variable is similar to outputvar – it defines the input
signals to this particular subsystem as linear combinations of individual
subsystem’s outputs and external inputs.
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sysout = sysic will perform the interconnection described by the
variables above, using the subsystem data in the names found in
systemnames. The resulting interconnection is returned in the output
argument, listed above as sysout.

After running sysic the variables systemnames, inputvar,
outputvar and all of the input_to_ListedSubSystemName will exist in
the workspace. Setting the optional variable cleanupsysic to 'yes'
will cause these variables to be removed from the workspace after sysic
has formed the interconnection.

Examples A simple system interconnection, identical to the system illustrated
in the iconnect description. Consider a three-input, two-output LTI
matrix T,

which has internal structure

P = rss(3,2,2);
K = rss(1,1,2);
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A = rss(1,1,1);
W = rss(1,1,1);
systemnames = 'W A K P';
inputvar = '[noise;deltemp;setpoint]';
outputvar = '[57.3*P(1);setpoint-P(2)]';
input_to_W = '[deltemp]';
input_to_A = '[K]';
input_to_K = '[P(2)+noise;setpoint]';
input_to_P = '[W;A]';
cleanupsysic = `yes';
T = sysic;
exist(`inputvar')

Limitations The syntax of sysic is limited, and for the most part is restricted to
what is shown here. The iconnect interconnection object can also be
used to define complex interconnections, and has a more flexible syntax.

Within sysic, error-checking routines monitor the consistency and
availability of the subsystems and their inputs. These routines provide
a basic level of error detection to aid the user in debugging.

See Also iconnect
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Purpose Tune fixed-structure control systems

Syntax [CL,fSoft] = systune(CL0,SoftReqs)
[CL,fSoft,gHard] = systune(CL0,SoftReqs,HardReqs)
[CL,fSoft,gHard] = systune(CL0,SoftReqs,HardReqs,options)
[CL,fSoft,gHard,info] = systune( ___ )

Description [CL,fSoft] = systune(CL0,SoftReqs) tunes the free parameters of
the control system model CL0 subject to the soft tuning requirements
SoftReqs. The best achieved soft constraint values are returned as
fSoft.

Note For tuning Simulink models with systune, see use slTunable
to create an interface to your Simulink model. You can then tune the
control system with slTunable.systune (requires Simulink Control
Design).

[CL,fSoft,gHard] = systune(CL0,SoftReqs,HardReqs) tunes the
control system to minimize the soft tuning requirements subject to hard
tuning requirements (constraints), and returns the best achieved values
for the hard constraints.

[CL,fSoft,gHard] = systune(CL0,SoftReqs,HardReqs,options)
specifies options for the optimization.

[CL,fSoft,gHard,info] = systune( ___ ) also returns detailed
information about each optimization run, and can include any of the
input arguments in previous syntaxes.
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Input
Arguments

CL0 - Control system to tune
generalized state-space model | model array

Control system to tune, specified as a generalized state-space (genss)
model or array of models with tunable parameters. To construct CL0:

1 Parameterize the tunable elements of your control system. You can
use predefined structures such as ltiblock.pid, ltiblock.gain,
and ltiblock.tf. Or, you can create your own structure from
elementary tunable parameters (realp).

2 Use model interconnection commands such as feedback and
connect to build a closed-loop model of the overall control system as
an interconnection of fixed and tunable components. Use loopswitch
blocks to mark optional loop-opening sites for specifying and
assessing open-loop requirements.

Specify an array of tunable genss models having the same tunable
parameters for robust tuning of a controller against a set of plant
models.

SoftReqs - Soft tuning requirements (objectives)
vector of TuningGoal requirement objects

Soft tuning requirements (objectives) for tuning the control system,
specified as a vector of TuningGoal requirement objects such as
TuningGoal.Tracking, TuningGoal.Gain, or TuningGoal.Margins.

systune tunes the tunable parameters of the control system to minimize
the soft tuning requirements, subject to the hard tuning requirements
(if any).

HardReqs - Hard tuning requirements (constraints)
[] (default) | vector of TuningGoal requirement objects

Hard tuning requirements (constraints) for tuning the control system,
specified as a vector of TuningGoal requirement objects such as
TuningGoal.Tracking, TuningGoal.Gain, or TuningGoal.Margins.
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systune converts each hard tuning requirement to a normalized scalar
value. systune then optimizes the free parameters minimize those
normalized values.

options - Options for tuning algorithm
systuneOptions object

Options for the tuning algorithm, specified as an options set you create
with systuneOptions. Available options include:

• Number of additional optimizations to run starting from random
initial values of the free parameters

• Tolerance for terminating the optimization

• Flag for using parallel processing

Output
Arguments

CL - Tuned control system
generalized state-space model

Tuned control system, returned as a generalized state-space (genss)
model having the same number and type of tunable elements (Control
Design Blocks) as CL0. The current value of these elements are the
tuned parameters. Use getBlockValue or showTunable to access values
of the tuned elements.

If you provide an array of control system models to tune as the input
argument CL0, systune tunes the parameters of all the models
simultaneously. In this case, CL is an array of tuned genss models. For
more information, see “Tune Controller Against Set of Plant Models”.

fSoft - Best achieved soft constraint values
vector

Best achieved soft constraint values, returned as a vector. systune
converts the soft requirements to a function of the free parameters of the
control system. The command then tunes the parameters to minimize
that function subject to the hard constraints. (See “Algorithms” on page
3-383.) fSoft contains the best achieved value for each of the soft
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constraints, in order of the constraints in SoftReqs. fSoft values are
only meaningful when the hard constraints are satisfied.

gHard - Best achieved hard constraint values
vector

Best achieved hard constraint values, returned as a vector. systune
converts the hard requirements to a function of the free parameters of
the control system. The command then tunes the parameters to drive
those values below 1. (See “Algorithms” on page 3-383.) gHard contains
the best achieved value for each of the hard constraints, in order of the
constraints in HardReqs. If all values are less than 1, then the hard
constraints are satisfied.

info - Detailed information about optimization runs
structure

Detailed information about each optimization run, returned as a data
structure. In addition to examining detailed results of the optimization,
you can use info as an input to viewSpec when validating a tuned
MIMO system. info contains scaling data that viewSpec needs for
correct evaluation of MIMO open-loop requirements such as loop shapes
and stability margins.

The fields of info are:

Run - Run number
scalar

Run number, returned as a scalar. If you use the RandomStart option of
systuneOptions to perform multiple optimization runs, info is a struct
array, and info.Run is the index.

Iterations - Total number of iterations performed during run
scalar

fBest - Best overall soft constraint value
scalar
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Best overall soft constraint value, returned as a scalar. systune
converts the soft requirements to a function of the free parameters of the
control system. The command then tunes the parameters to minimize
that function subject to the hard constraints. (See “Algorithms” on page
3-383.) info.fBest is the maximum soft constraint value at the final
iteration. This value is only meaningful when the hard constraints
are satisfied.

gBest - Best overall hard constraint value
scalar

Best overall hard constraint value, returned as a scalar. systune
converts the hard requirements to a function of the free parameters of
the control system. The command then tunes the parameters to drive
those values below 1. (See “Algorithms” on page 3-383.) info.gBest is
the maximum hard constraint value at the final iteration. This value
must be less than 1 for the hard constraints to be satisfied.

fSoft - Individual soft constraint values
vector

Individual soft constraint values, returned as a vector. systune
converts each soft requirement to a normalized value that is a function
of the free parameters of the control system. The command then tunes
the parameters to minimize that value subject to the hard constraints.
(See “Algorithms” on page 3-383.) info.fSoft contains the individual
values of the soft constraints at the end of each run. The values are in
order of the constraints in SoftReqs.

gHard - Individual hard constraint values
vector

Individual hard constraint values, returned as a vector. systune
converts each hard requirement to a normalized value that is a function
of the free parameters of the control system. The command then tunes
the parameters to minimize those values. A hard requirement is
satisfied if its value is less than 1. (See “Algorithms” on page 3-383.)
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info.gHard contains the individual values of the hard constraints at the
end of each run. The values are in order of the constraints in HardReqs.

MinDecay - Minimum decay rate of closed-loop poles
vector

Minimum decay rate of closed-loop poles, returned as a vector.

By default, closed-loop pole locations of the tuned system are
constrained to satisfy Re(p) < –10–7. Use the MinDecay option of
systuneOptions to change this constraint.

Blocks - Tuned values of tunable blocks and parameters
structure

Tuned values of tunable blocks and parameters in the tuned control
system CL, returned as a structure. You can also use getBlockValue or
showBlockValue to access the tuned parameter values.

LoopScaling - Optimal diagonal scaling for MIMO tuning
requirements
state-space model

Optimal diagonal scaling for evaluating MIMO tuning requirements,
returned as a state-space model.

When applied to multiloop control systems, TuningGoal.LoopShape
and TuningGoal.Margins requirements can be sensitive to the scaling
of the individual loop transfer functions to which they apply. systune
automatically corrects scaling issues and returns the optimal diagonal
scaling matrix d as a state-space model in info.LoopScaling.

The loop channels associated with each diagonal entry of D are
listed in info.LoopScaling.InputName. The scaled loop transfer is
D\L*D, where L is the open-loop transfer measured at the locations
info.LoopScaling.InputName.
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Examples Tune Control System to Soft Requirements

Tune a cascaded control system to meet requirements of reference
tracking and disturbance rejection.

The cascaded control system of the following illustration includes two
tunable controllers, the PI controller C2 for the inner loop, and the PID
controller C1 for the outer loop.
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The locations x1 and x2 mark optional loop opening locations, where
loops can be opened or signals injected for the purpose of specifying
requirements for tuning the system.

Tune the free parameters of this control system so that the output
signal y1 tracks the reference signal r with a response time of 10 seconds
and a steady-state error of 1%. Also, ensure that a disturbance injected
at the location x2 is suppressed at the output y1 by a factor of 10.

Create tunable Control Design Blocks to represent the controllers, and
numeric LTI models to represent the plants. Also, create switch blocks
to represent the loop opening locations.

G2 = zpk([],-2,3);
G1 = zpk([],[-1 -1 -1],10);

C20 = ltiblock.pid('C2','pi');
C10 = ltiblock.pid('C1','pid');

X1 = loopswitch('X1');
X2 = loopswitch('X2');
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The loopswitch blocks represent optional loop-opening locations that
are closed by default. You can also use these locations to specify input
or output signals for tuning requirements.

Connect these components to build a model of the entire closed-loop
control system.

InnerLoop = feedback(X2*G2*C20,1);
CL0 = feedback(G1*InnerLoop*C10,X1);
CL0.InputName = 'r';
CL0.OutputName = 'y';

CL0 is a tunable genss model. Specifying names for the input and
output channels allows you to identify them when you specify tuning
requirements for the system.

Specify tuning requirements for reference tracking and disturbance
rejection.

Rtrack = TuningGoal.Tracking('r','y',10,0.01);
Rreject = TuningGoal.Gain('X2','y',0.1);

The TuningGoal.Tracking requirement specifies that the signal 'y'
tracks the signal 'r' with a response time of 10 seconds and a tracking
error of 1%.

The TuningGoal.Gain requirement limits the gain from the implicit
input associated with the loopswitch block X2 to the output 'y'.
Limiting this gain to a value less than 1 ensures that a disturbance
injected at X2 is suppressed at the output.

Tune the control system.

[CL,fSoft] = systune(CL0,[Rtrack,Rreject]);

Final: Soft = 1.24, Hard = -Inf, Iterations = 109

systune converts each tuning requirement into a normalized scalar
value, f. The command adjusts the tunable parameters of CL0 to
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minimize the f values. For each requirement, the requirement is
satisfied if f < 1, and violated if f >1. fSoft is the vector of minimized f
values. The largest of the minimized value is displayed as Soft.

The output model CL is the tuned version of CL0. The tuned model CL
contains the same Control Design Blocks as CL0, with current values
equal to the tuned parameter values.

Validate that the tuned control system meets the tracking requirement
by examining the step response from 'r' to 'y'.

stepplot(CL)
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The step plot shows that in the tuned control system CL, the output
tracks the input with approximately the desired response time.

Validate the tuned system against the disturbance rejection
requirement by examining the closed-loop response to a signal injected
at X2.

CLdist = getIOTransfer(CL,'X2','y');
stepplot(CLdist);

getIOTransfer extracts the closed-loop response from the specified
inputs to outputs. In general, getIOTransfer and getLoopTransfer
are useful for validating a control system tuned with systune.
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You can also use viewSpec to compare the responses of the tuned control
system directly against the tuning requirements Rtrack and Rreject.

viewSpec([Rtrack,Rreject],CL)

Tune Control System to Both Hard and Soft Requirements

Tune a cascaded control system to meet requirements of reference
tracking and disturbance rejection, subject to a hard constraint on the
stability margins of the inner and outer loops.

3-377



systune

The cascaded control system of the following illustration includes two
tunable controllers, the PI controller C2 for the inner loop, and the PID
controller C1 for the outer loop.
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The locations x1 and x2 mark optional loop opening locations, where
loops can be opened or signals injected for the purpose of specifying
requirements for tuning the system.

Tune the free parameters of this control system so that the output
signal y1 tracks the reference signal r with a response time of 10 seconds
and a steady-state error of 1%. Also, ensure that a disturbance injected
at the location x2 is suppressed at the output y1 by a factor of 10. These
requirements are subject to hard constraints on the stability margins of
both loops.

Create tunable Control Design Blocks to represent the controllers, and
numeric LTI models to represent the plants. Also, create switch blocks
to represent the loop opening locations.

G2 = zpk([],-2,3);
G1 = zpk([],[-1 -1 -1],10);

C20 = ltiblock.pid('C2','pi');
C10 = ltiblock.pid('C1','pid');

X1 = loopswitch('X1');
X2 = loopswitch('X2');
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The loopswitch blocks represent optional loop-opening locations that
are closed by default. You can also use these locations to specify input
or output signals for tuning requirements.

Connect these components to build a model of the entire closed-loop
control system.

InnerLoop = feedback(X2*G2*C20,1);
CL0 = feedback(G1*InnerLoop*C10,X1);
CL0.InputName = 'r';
CL0.OutputName = 'y';

CL0 is a tunable genss model. Specifying names for the input and
output channels allows you to identify them when you specify tuning
requirements for the system.

Specify tuning requirements for reference tracking and disturbance
rejection.

Rtrack = TuningGoal.Tracking('r','y',10,0.01);
Rreject = TuningGoal.Gain('X2','y',0.1);

The TuningGoal.Tracking requirement specifies that the signal 'y'
tracks the signal 'r' with a response time of 10 seconds and a tracking
error of 1%.

The TuningGoal.Gain requirement limits the gain from the implicit
input associated with the loopswitch block X2 to the output 'y'.
Limiting this gain to a value less than 1 ensures that a disturbance
injected at X2 is suppressed at the output.

Specify tuning requirements for the gain and phase margins.

RmargOut = TuningGoal.Margins('X1',18,60);
RmargIn = TuningGoal.Margins('X2',18,60);
RmargIn.Openings = 'X1';

RmargOut imposes a minimum gain margin of 18 dB and a minimum
phase margin of 60 degrees on the outer loop, identified by the
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loop-opening site X1. Similarly, RmargIn imposes the same requirements
on the inner loop, identified by X2. To ensure that the inner loop
margins are evaluated with the outer loop open, include the outer
loop-opening site X1 in RmargIn.Openings.

Tune the control system to meet the soft requirements of tracking and
disturbance rejection, subject to the hard constraints of the stability
margins.

SoftReqs = [Rtrack,Rreject];
HardReqs = [RmargIn,RmargOut];
[CL,fSoft,gHard] = systune(CL0,SoftReqs,HardReqs);

Final: Soft = 1.71, Hard = 0.9998, Iterations = 208

systune converts each tuning requirement into a normalized scalar
value, f for the soft constraints and g for the hard constraints. The
command adjusts the tunable parameters of CL0 to minimize the f
values, subject to the constraint that each h < 1.

The displayed value Hard is the largest of the minimized h values in the
vector gHard. Since this value is less than 1, both the hard constraints
are satisfied.

Validate the tuned control system against the stability margin
requirements.

viewSpec(HardReqs,CL)
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The viewSpec plot confirms that the stability margin requirements for
both loops are satisfied by the tuned control system at all frequencies.
The red traces represent the actual stability margins of the tuned
system. The blue traces represent the margin used in the optimization
calculation, which is an upper bound on the actual margin.
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Examine whether the tuned control system meets the tracking
requirement by examining the step response from 'r' to 'y'.

stepplot(CL)

The step plot shows that in the tuned control system CL, the output
tracks the input but the response is somewhat slower than desired.
The tuned control system cannot meet the soft requirement of a fast
response time subject to the hard constraints of the stability margins.
To achieve the desired performance, you might need to relax one of
your requirements, or convert one or more hard constraints to soft
constraints.
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Algorithms Let x be the vector of tunable parameters in the control system to tune.
systune converts each soft and hard tuning requirement SoftReqs(i)
and HardReqs(j) into normalized values fi(x) and gj(x), respectively.
systune then solves the minimization problem:

Minimize max
i

if x  subject to max
j

jg x   1 , for x x xmin max  .

xmin and xmax are the minimum and maximum values of the free
parameters of the control system.

systune returns the control system CL with parameters tuned to
the values that best solve the minimization problem. systune also
returns the best achieved values of fi(x) and gj(x), as fSoft and gHard
respectively.

For information about the functions fi(x) and gj(x) for each type of
constraint, see the reference pages for each TuningGoal requirement
object.

systune uses the nonsmooth optimization algorithms described in [1].

systune computes the H∞ norm using the algorithm of [2] and
structure-preserving eigensolvers from the SLICOT library. For more
information about the SLICOT library, see http://slicot.org.

References
[1] P. Apkarian and D. Noll, "Nonsmooth H-infinity Synthesis." IEEE
Transactions on Automatic Control, Vol. 51, Number 1, 2006, pp. 71–86.

[2] Bruisma, N.A. and M. Steinbuch, "A Fast Algorithm to Compute the
H∞-Norm of a Transfer Function Matrix," System Control Letters, 14
(1990), pp. 287-293.
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See Also systuneOptions | viewSpec | genssslTunable.systune | |
looptune | loopswitchslTunable | TuningGoal.Tracking |
TuningGoal.Gain | TuningGoal.Margins |

Related
Examples

• “Tuning Control Systems with SYSTUNE”
• “Building Tunable Models”

Concepts • “Set Up Your Control System for Tuning with systune”
• “Specifying Design Requirements for systune”
• “Generalized Models”
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Purpose Set options for systune

Syntax options = systuneOptions
options = systuneOptions(Name,Value)

Description options = systuneOptions returns the default option set for the
systune command.

options = systuneOptions(Name,Value) creates an option set with
the options specified by one or more Name,Value pair arguments.

Input
Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

systuneOptions takes the following Name arguments:

Display

Amount of information to display during systune runs.

Display takes the following values:

• 'final' — Display a one-line summary at the end of each
optimization run. The display includes the best achieved values for
the soft and hard constraints, fSoft and gHard. The display also
includes the number of iterations for each run.

• 'sub'— Display the result of each optimization subproblem.

• 'iter' — Display optimization progress after each iteration. The
display includes the value after each iteration of the objective
parameter being minimized. The objective parameter is whichever
is larger of the hard constraints or the scaled soft constraints. The
display also includes a progress value that indicates the percent
change in the constraints from the previous iteration.
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• 'off' — Run in silent mode, displaying no information during or
after the run.

Default: 'final'

MaxIter

Maximum number of iterations in each optimization run.

Default: 300

RandomStart

Number of additional optimizations starting from random values of the
free parameters in the controller.

If RandomStart = 0, systune performs a single optimization run
starting from the initial values of the tunable parameters. Setting
RandomStart = N > 0 runs N additional optimizations starting from N
randomly generated parameter values.

systune tunes by finding a local minimum of a gain minimization
problem. To increase the likelihood of finding parameter values that
meet your design requirements, set RandomStart > 0. You can then
use the best design that results from the multiple optimization runs.

Use with UseParallel = true to distribute independent optimization
runs among MATLAB workers (requires Parallel Computing Toolbox
software).

Default: 0

UseParallel

Parallel processing flag.

Set to true to enable parallel processing by distributing randomized
starts among MATLAB workers. Independent optimization runs
are performed concurrently. (Requires Parallel Computing Toolbox
software.)
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Default: false

SoftTarget

Target value for soft constraints.

The optimization stops when the largest soft constraint value falls below
the specified SoftTarget value. The default value SoftTarget = 0
minimizes the soft constrains subject to satisfying the hard constraints.

Default: 0

SoftTol

Relative tolerance for termination.

The optimization terminates when the relative decrease in the soft
constraint value decreases by less than SoftTol over 10 consecutive
iterations. Increasing SoftTol speeds up termination, and decreasing
SoftTol yields tighter final values.

Default: 0.001

SoftScale

A priori estimate of best soft constraint value.

For problems that mix soft and hard constraints, providing a rough
estimate of the optimal value of the soft constraints (subject to the hard
constraints) helps to speed up the optimization.

Default: 1

ScalingOrder

D-scaling order.

The D-scaling order is the number of states in the diagonal scalings
involved in computing MIMO stability margins and loop shapes.
Increasing this order can improve results at the expense of additional
computations.

3-387



systuneOptions

When tuning to stability margin requirements, use viewspec to assess
the gap between the optimized margins and the actual margins. Try
increasing the scaling order if this gap is too large.

Default: 0

MinDecay

Minimum decay rate for closed-loop poles.

Constrains all closed-loop pole locations |p| to satisfy Re(p) <
-MinDecay. Adjust the minimum value if the optimization cannot meet
the default minimum value, or if the default minimum value conflicts
with other requirements. For specifying other constraints on the
closed-loop pole locations, use TuningGoal.Poles.

Default: 1e-7

Output
Arguments

options

Option set containing the specified options for the systune command.

Examples Create Options Set for systune

Create an options set for a systune run using five random restarts.
Also, set the display level to show the progress of each iteration, and
increase the relative tolerance of the soft constraint value to 0.01.

options = systuneOptions('RandomStart',5,'Display','iter',...
'SoftTol',0.01);

Alternatively, use dot notation to set the values of options.

options = systuneOptions;
options.RandomStart = 5;
options.Display = 'iter';
options.SoftTol = 0.01;
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Configure Option Set for Parallel Optimization Runs

Configure an option set for a systune run using 20 random restarts,
running these independent optimization runs concurrently on multiple
MATLAB workers.

If you have the Parallel Computing Toolbox software installed, you can
use parallel computing to speed up systune tuning of fixed-structure
control systems. When you run multiple randomized systune
optimization starts, parallel computing speeds up tuning by distributing
the optimization runs among MATLAB workers.

Start a worker pool of MATLAB sessions using the Parallel Computing
Toolbox command matlabpool. For example:

matlabpool('open')

Create a systuneOptions set that specifies 20 random restarts to run
in parallel.

options = systuneOptions('RandomStart',20,'UseParallel',true);

Setting UseParallel to true enables parallel processing by distributing
the randomized starts among available MATLAB workers in the pool.

Use the systuneOptions set when you call systune. For example,
suppose you have already created a tunable control system model, CLO.
Suppose also that you have created vectors SoftReqs and HardReqs of
TuningGoal requirements objects that represent your soft and hard
constraints, respectively. In that case, the following command uses
parallel computing to tune the control system of CL0.

[CL,fSoft,gHard] = systune(CL0,SoftReqs,HardReqs,options);

See Also | systune
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Purpose Create uncertain complex parameter

Syntax A = ucomplex('NAME',nominalvalue)
A = ucomplex('NAME',nominalvalue,'Property1',Value1,...

'Property2',Value2,...)

Description An uncertain complex parameter is used to represent a complex number
whose value is uncertain. Uncertain complex parameters have a name
(the Name property), and a nominal value (the NominalValue property).

The uncertainty (potential deviation from the nominal value) is
described in two different manners:

• Radius (radius of disc centered at NominalValue)

• Percentage (disc size is percentage of magnitude of NominalValue)

The Mode property determines which description remains invariant if
the NominalValue is changed (the other is derived). The default Mode is
'Radius' and the default radius is 1.

Property/Value pairs can also be specified at creation. For instance,

B = ucomplex('B',6-j,'Percentage',25)

sets the nominal value to 6-j, the percentage uncertainty to 25 and,
implicitly, the Mode to 'Percentage'.

Examples Create an uncertain complex parameter with internal name A. The
uncertain parameter’s possible values are a complex disc of radius 1,
centered at 4+3j. The value of A.percentage is 20 (radius is 1/5 of the
magnitude of the nominal value).

A = ucomplex('A',4+3*j)
Uncertain Complex Parameter: Name A, NominalValue 4+3i, Radius 1

You can visualize the uncertain complex parameter by sampling and
plotting the data.

sa = usample(A,400);
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w = linspace(0,2*pi,200);
circ = sin(w) + j*cos(w);
rc = real(A.NominalValue+circ);
ic = imag(A.NominalValue+circ);
plot(real(sa(:)),imag(sa(:)),'o',rc,ic,'k-')
xlim([2.5 5.5])
ylim([1.5 4.5])
axis equal

See Also get | umat | ucomplexm | ultidyn | ureal
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Purpose Create uncertain complex matrix

Syntax M = ucomplexm('Name',NominalValue)
M = ucomplexm('Name',NominalValue,'WL',WLvalue,'WR',WRvalue)
M = ucomplexm('Name',NominalValue,'Property',Value)

Description M = ucomplexm('Name',NominalValue) creates an uncertain complex
matrix representing a ball of complex-valued matrices, centered at a
NominalValue and named Name.

M =
ucomplexm('Name',NominalValue,'WL',WLvalue,'WR',WRvalue)
creates an uncertain complex matrix with weights WL and WR.
Specifically, the values represented by M are all matrices H that satisfy
norm(inv(M.WL)*(H - M.NominalValue)*inv(M.WR)) <= 1. WL and
WR are square, invertible, and weighting matrices that quantify the size
and shape of the ball of matrices represented by this object. The default
values for WL and WR are identity matrices of appropriate dimensions.

Trailing Property/Value pairs are allowed, as in

M = ucomplexm('NAME',nominalvalue,'P1',V1,'P2',V2,...)

The property AutoSimplify controls how expressions involving
the uncertain matrix are simplified. Its default value is 'basic',
which means elementary methods of simplification are applied
as operations are completed. Other values for AutoSimplify are
'off'', no simplification performed, and 'full' which applies
model-reduction-like techniques to the uncertain object.

Examples Create a ucomplexm with the name 'F', nominal value [1 2 3; 4 5
6], and weighting matrices WL = diag([.1.3]), WR = diag([.4 .8
1.2]).

F = ucomplexm('F',[1 2 3;4 5 6],'WL',diag([.1 .3]),...
'WR',diag([.4 .8 1.2]));
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Sample the difference between the uncertain matrix and its nominal
value at 80 points, yielding a 2-by-3-by-80 matrix typicaldev.

typicaldev = usample(F-F.NominalValue,40);

Plot histograms of the deviations in the (1,1) entry as well as the
deviations in the (2,3) entry.

The absolute values of the (1,1) entry and the (2,3) entry are shown by
histogram plots. Typical deviations in the (1,1) entry should be about 10
times smaller than the typical deviations in the (2,3) entry.

subplot(2,1,1);
hist(abs(typicaldev(1,1,:)));xlim([0 .25])
title('Sampled F(1,1) - F(1,1).NominalValue')
subplot(2,1,2);
hist(abs(typicaldev(2,3,:)));xlim([0 .25])
title('Sampled F(2,3) - F(2,3).NominalValue')
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See Also get | umat | ucomplex | ultidyn | ureal
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Purpose Fit an uncertain model to set of LTI responses

Syntax usys = (Parray,Pnom,ord)
usys = (Parray,Pnom,ord1,ord2,utype)
[usys,info] = (Parray,...)
[usys_new,info_new] = (Pnom,info,ord1_new,ord2_new)

Description usys = (Parray,Pnom,ord) returns an uncertain model usys with
nominal value Pnom and whose range of behaviors includes all responses
in the LTI array Parray. The uncertain model structure is of the form

usys Pnom W s s= + Δ( )1 ( ) ( ) , where

• Δ is an ultidyn object that represents uncertain dynamics with unit
peak gain.

• W is a stable, minimum-phase shaping filter that adjusts the amount
of uncertainty at each frequency.

ord is the number of states (order) of W. Pnom and Parray can be ss,
tf, zpk, or zpk models. usys is of class ufrd when Pnom is an frd model
and is an uss model otherwise.

usys = (Parray,Pnom,ord1,ord2,utype) specifies the order ord1
and ord2 of each diagonal entry of W1 and W2, where W1 and
W2 are diagonal, stable, minimum-phase shaping filters. utype
specifies the uncertain model structure, as described in “Uncertain
Model Structures” on page 3-396, and can be ’InputMult’ (default),
’OutputMult’ or ’Additive’. ord1 and ord2 can be:

• [], which implies that the corresponding filter is 1.

• Scalar, which implies that the corresponding filter is scalar-valued.

• Vectors with as many entries as diagonal entries in W1 and W2.

[usys,info] = (Parray,...) returns a structure info that contains
optimization information. info.W1opt and Info.W2opt contain the
values of W1 and W2 computed on a frequency grid and info.W1 and
info.W2 contain the fitted shaping filters W1 and W2.
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[usys_new,info_new] = (Pnom,info,ord1_new,ord2_new) improves
the fit using initial filter values in info and new orders ord1_new and
ord2_new of W1 and W2. This syntax speeds up command execution by
reusing previously computed information. Use this syntax when you
are changing filter orders in an iterative workflow.

Definitions Uncertain Model Structures

When fitting the responses of LTI models in Parray, the gaps between
Parray and the nominal response Pnom of the uncertain model are
modeled as uncertainty on the system dynamics. To model the
frequency distribution of these unmodeled dynamics, ucover measures
the gap between Pnom and Parray at each frequency and selects a
shaping filter W whose magnitude approximates the maximum gap
between Pnom and Parray. The following figure shows the relative gap
between the nominal response and six LTI responses, enveloped using a
second-order shaping filter.
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The software then sets the uncertainty to W · Δ, where Δ is an ultidyn
object that represents unit-gain uncertain dynamics. This ensures
that the amount of uncertainty at each frequency is specified by the
magnitude of W and therefore closely tracks the gap between Pnom and
Parray.

There are three possible uncertainty model structures:

• Input Multiplicative of the form usys = Pnom × (I + W1 × Δ ×W2).

• Output Multiplicative of the form usys = (I + W1 × Δ ×W2) × Pnom.

• Additive of the form usys = Pnom + W1 × Δ ×W2.
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Use additive uncertainty to model the absolute gaps between Pnom and
Parray, and multiplicative uncertainty to model relative gaps.

Note For SISO models, input and output multiplicative uncertainty are
equivalent. For MIMO systems with more outputs than inputs, the
input multiplicative structure may be too restrictive and not adequately
cover the range of models.

The model structure usys = Pnom × (I + W× Δ) that you obtain using
usys = ucover(Parray,Pnom,ord), corresponds to W1 = W × I and
W1 = 1.

Examples 1 Fit an uncertain model to multiple LTI responses:

Create the nominal plant.

Pnom = tf(2,[1 -2]);

2 Create an LTI array whose responses the uncertain model should fit.

p1 = Pnom*tf(1,[.06 1]);
p2 = Pnom*tf([-.02 1],[.02 1]);
p3 = Pnom*tf(50^2,[1 2*.1*50 50^2]);
array = stack(1,p1,p2,p3);
Parray = frd(array,logspace(-1,3,60));

3 Plot relative errors between the nominal plant response and the
three models in the LTI array.

bodemag((Pnom-Parray)/Pnom)

The set of relative errors is shown in the following figure. If you
use a multiplicative uncertainty model structure, the magnitude of
the shaping filter should fit the maximum relative errors at each
frequency.
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4 Use a 1st-order shaping filter to fit the maximum relative errors.

[P,Info] = ucover(Parray,Pnom,1);

5 Plot a Bode magnitude plot to see how well the shaping filter fits
the relative errors.

3-399



ucover

bodemag((Pnom-Parray)/Pnom,'b--',Info.W1,'r'); grid

The plot, as shown in the following figure, shows that the filter W1
is too conservative and exceeds the maximum relative error at most
frequencies.

6 To obtain a tighter fit, rerun the function using a 4th-order filter.

[P,Info] = ucover(Parray,Pnom,4);

7 Evaluate the fit by plotting the Bode magnitude plot.

bodemag((Pnom-Parray)/Pnom,'b--',Info.W1,'r'); grid
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The plot, as shown in the following figure, shows that magnitude of
W1 closely matches the minimum uncertainty amount.

Algorithms The ucover command designs the minimum-phase shaping filters W1
and W2 in two steps:

1 Computes the optimal values of W1 and W2 on a frequency grid.

2 Fits W1 and W2 values with the dynamic filters of the specified orders
using the fitmagfrd command.
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Tutorials • Modeling a Family of Responses as an Uncertain System

• Simultaneous Stabilization Using Robust Control

• First-Cut Robust Design

See Also ss | tf | zpk | frd | usample
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Purpose Create unstructured uncertain dynamic system object

Syntax n = udyn('name',iosize);

Description n = udyn('name',iosize) creates an unstructured uncertain dynamic
system class, with input/output dimension specified by iosize. This
object represents the class of completely unknown multivariable,
time-varying nonlinear systems.

For practical purposes, these uncertain elements represent
noncommuting symbolic variables (placeholders). All algebraic
operations, such as addition, subtraction, and multiplication (i.e.,
cascade) operate properly, and substitution (with usubs) is allowed.

The analysis tools (e.g., robuststab) do not currently handle these
types of uncertain elements. Therefore, these elements do not provide a
significant amount of usability, and their role in the toolbox is small.

Examples You can create a 2-by-3 udyn element and check its size and properties.

N = udyn('N',[2 3])
Uncertain Dynamic System: Name N, size 2x3
size(N)
ans =

2 3
get(N)

Name: 'N'
NominalValue: [2x3 double]
AutoSimplify: 'basic'

See Also ureal | ultidyn | ucomplex | ucomplexm
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Purpose Find uncertain variables in Simulink model

Syntax uvars = ufind('mdl')
[uvars,pathinfo] = ufind('mdl')
uvars = ufind(usys_1,usys_2,...)

Description uvars = ufind ('mdl') finds Uncertain State Space blocks in the
Simulink model mdl. It returns a structure uvars that contains all
uncertain variables associated with the Uncertain State Space blocks.
Each uncertain variable is a ureal or ultidyn object and is listed by
name in uvars.

[uvars,pathinfo] = ufind('mdl') returns a cell array pathinfothat
contains paths to the Uncertain State Space blocks and the
corresponding uncertain variables in the block. The first column of
pathinfo lists the block paths through the model hierarchy and the
second column lists the uncertain variables associated with the block.
Use pathinfo to verify that all Uncertain State Space blocks in the
model mdl have been identified.

uvars = ufind(usys_1,usys_2,...) collects all uncertain variables
referenced by the uncertain model usys_n. usys_n can be uss or ufrd
models. Use this syntax as an alternative to querying the model itself,
when you know the uncertain models that the Uncertain State Space
blocks use.

ufind can find Uncertain State Space blocks inside Masked Subsystems,
Library Links, and Model References but not inside Accelerated
Model References. ufind errors out if the same uncertain variable
name has different definitions in the model. For example, if your
model contains two Uncertain State Space blocks where the uncertain
system variables define the same uncertain variable 'unc_par" as
ultidyn('unc_par',[1 1]) and ureal('unc_par',5), such an error
occurs.

Examples Find all Uncertain State Space blocks and uncertain variables in a
Simulink model:
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1 Open the Simulink model.

open_system('usim_model')

The model, as shown in the following figure, contains three Uncertain
State Space blocks named Unmodeled Plant Dynamics, Plant, and
Sensor Gain. These blocks depend on three uncertain variables
named input_unc, unc_pole and sensor_gain.

2 Use ufind to find all Uncertain State Space blocks and uncertain
variables in the model.

[uvars,pathinfo] = ufind('usim_model')

3 Type uvars to view the structure uvars. MATLAB returns the
following result:

uvars =

input_unc: [1x1 ultidyn]
sensor_gain: [1x1 ureal]

unc_pole: [1x1 ureal]

Each uncertain variable is a ureal or ultidyn object and is listed
by name in uvars.
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4 View the Uncertain State Space block paths and uncertain variables.

a Type pathinfo(:,1) to view paths of the Uncertain State Space
blocks in the model. MATLAB returns the following result:

ans =

'usim_model/Plant'
'usim_model/Sensor Gain'
'usim_model/Unmodeled Plant Dynamics'

b Type pathinfo(:,2) to view the uncertain variables referenced by
each Uncertain State Space block. MATLAB returns the following
results:

ans =

'unc_pole'
'sensor_gain'
'input_unc'

Tutorials “Vary Uncertainty Values Using Individual Uncertain State Space
Blocks”

“Vary Uncertainty Values Across Multiple Uncertain State Space
Blocks”

Robustness Analysis in Simulink

How To “Simulate Uncertainty Effects”

See Also usample | Uncertain State Space

3-406



ufrd

Purpose Uncertain frequency response data model

Syntax usysfrd = ufrd(usys,frequency)
usysfrd = ufrd(usys,frequency,'Units',units)
usysfrd = ufrd(sysfrd)
usys = ufrd(response,frequency)
usys = ufrd(response,frequency,Ts)
usys = ufrd(response,frequency,RefSys)
usys = ufrd(response,frequency,'Units',units,Ts)
usys = ufrd(response,frequency,'Units',units,Ts,RefSys)
ufrd_sys = ufrd(M,freqs)
ufrd_sys = ufrd(M,freqs,frequnits)
ufrd_sys = ufrd(M,freqs,frequnits,timeunits)
usysfrd = ufrd(usys,frequency,'Units',units)
usysfrd = ufrd(usys,frequency,'Units',units,'P1',V1,'P2',V2,

...)
usys = ufrd(response,frequency)
usysfrd = ufrd(sysfrd)

Description Uncertain frequency response data models (ufrd) arise when combining
numeric frd models with uncertain models such as ureal, ultidyn, or
uss. A ufrd model keeps track of how the uncertain elements affect
the frequency response. Use ufrd for robust stability and worst-case
performance analysis.

There are three ways to construct a ufrd model:

1 Combine numeric frd models with uncertain models using model
arithmetic. For example:

sys = frd(rand(100,1),logspace(-2,2,100));
k = ureal('k',1);
D = ultidyn('Delta',[1 1]);
ufrd_sys = k*sys*(1+0.1*D)

ufrd_sys is a ufrd model with uncertain elements k and D.
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2 ufrd_sys = ufrd(M,freqs) converts the dynamic system model or
static model M to ufrd. If M contains Control Design Blocks that do
not represent uncertainty, these blocks are replaced by their current
value. (To preserve both tunable and uncertain Control Design
Blocks, use genfrd instead.)

Use ufrd_sys = ufrd(M,freqs,frequnits) to specify the frequency
units of the frequencies in freqs with the string frequnits. Use
ufrd_sys = ufrd(M,freqs,frequnits,timeunits) to specify the
time unit of ufrd_sys when M is a static model.

3 Use frd to construct a ufrd model from an uncertain matrix (umat)
representing uncertain frequency response data. For example:

a = ureal('delta',1,'percent',50);
freq = logspace(-2,2,100);
RespData = rand(1,1,100) * a;
usys = frd(RespData,freq,0.1)

Examples Compute the uncertain frequency response of an uncertain system
(uss model) with both parametric uncertainty (ureal) and unmodeled
dynamics uncertainty (ultidyn).

p1 = ureal('p1',5,'Range',[2 6]);
p2 = ureal('p2',3,'Plusminus',0.4);
p3 = ultidyn('p3',[1 1]);
Wt = makeweight(.15,30,10);
A = [-p1 0;p2 -p1];
B = [0;p2];
C = [1 1];
usys = uss(A,B,C,0)*(1+Wt*p3);

usysfrd = ufrd(usys,logspace(-2,2,60));

Plot 20 random samples and the nominal value of the uncertain
frequency response.

bode(usysfrd,'r',usysfrd.NominalValue,'b+')
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See Also frd | ss | uss | genfrd

How To • “Control Design Blocks”
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Purpose Linearize Simulink model with Uncertain State Space block

Syntax ulin = ulinearize('sys',io)
ulin = ulinearize('sys',op,io)
ulin = ulinearize('sys',op,io,options)
ulin = ulinearize('sys',op)
ulin_block = ulinearize('sys',op,'blockname')
[ulin,op] = ulinearize('sys',snapshottimes,...);
ulin = ulinearize('sys','StateOrder',stateorder)

Description ulin = ulinearize('sys',io) linearizes the Simulink model sys
that contains Uncertain State Space blocks and returns a linear
time-invariant uncertain system ulin. ulin is an uss object. io
is an I/O object that specifies linearization I/O points in the model.
Use getlinio or linio to create io. The linearization occurs at the
operating point specified in the model.

ulin=ulinearize('sys',io,op) linearizes the model at the operating
point specified in the operating point object op. Use operpoint or
findop to create op. Both op and io are associated with the same
model sys.

ulin=ulinearize('sys',io,op,options) takes a linearization options
object options that contains several options for linearization and
returns linear time-invariant uncertain system ulin. Use linoptions
to create options.

ulin=ulinearize('sys',op) linearizes the model sys at the operating
point specified in the operating point object op. The software uses
root-level inport and outport blocks in sys as I/O points for linearization.

ulin_block=ulinearize('sys',op,'blockname',...) takes the
name of a block blockname in the model sys and returns a linear
time-invariant uncertain system ulin_block. You can also specify a
fourth argument options to provide options for the linearization.

[ulin,op] = ulinearize('sys',snapshottimes,...) creates
operating points for linearization by simulating the model and taking
snapshots of the system’s states and inputs at times specified in the
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vector snapshottimes. ulin is a set of linear time-invariant uncertain
systems and op is the set of operating point objects used in linearization.
You can also specify I/O object for linearization, or a block name. If
you do not specify an I/O object or block name, the linearization uses
root-level inport and outport blocks in the model. You can also supply
an additional argument, options, to provide options for linearization.

ulin = ulinearize('sys','StateOrder',stateorder) creates a
linear-time-invariant uncertain system ulin, whose states are in a
specified order. Specify the state order in the cell array stateorder by
entering the names of the blocks containing states in the model. For all
blocks, you can enter block names as the full block path. For continuous
blocks, you can alternatively enter block names as the user-defined
unique state name.

Examples Compute uncertain linearization of a Simulink model containing
Uncertain State Space blocks:

% Define uncertain variables and uncertain system variables
% to use in Uncertain State Space blocks.
unc_pole = ureal('unc_pole',-5,'Range',[-10 -4]);
plant = ss(unc_pole,5,1,0);
wt = makeweight(0.25,130,2.5);
input_unc = ultidyn('input_unc',[1 1]);
sensor_pole = ureal('sensor_pole',-20,'Range',[-30 -10]);
sensor = tf(1,[1/(-sensor_pole) 1]);

% Open Simulink model. The model contains three Uncertain State
% Space blocks named Unmodeled Plant Dynamics, Uncertain Plant and
% Uncertain Sensor, and linearization I/O points.
open_system('rct_ulinearize_uss')

% Obtain linearization I/O points.
mdl = 'rct_ulinearize_uss';
io = getlinio(mdl);

% Compute the uncertain linearization of the model.
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ulin = ulinearize(mdl,io)
% MATLAB returns an uss object with 5 states.

Tutorials “Linearize Block to Uncertain Model”

Linearization of Simulink Models with Uncertainty

How To “Obtain Uncertain State-Space Model from Simulink Model”

See Also ureal | udyn | ultidyn | uss
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Purpose Create uncertain linear time-invariant object

Syntax H = ultidyn('Name',iosize)
H = ultidyn('Name',iosize,'Property1',Value1,'Property2',Value2,...)

Description H = ultidyn('Name',iosize) creates an uncertain linear,
time-invariant objects are used to represent unknown dynamic objects
whose only known attributes are bounds on their frequency response.
Uncertain linear, time-invariant objects have a name (the Name
property), and an input/output size (ioSize property).

The property Type is 'GainBounded' (default) or 'PositiveReal', and
describes in what form the knowledge about the object’s frequency
response is specified.

• If Type is 'GainBounded', then the knowledge is an upper bound on
the magnitude (i.e., absolute value), namely abs(H)<= Bound at all
frequencies. The matrix generalization of this is H <= Bound.

• If Type is 'PositiveReal' then the knowledge is a lower bound on
the real part, namely Real(H) >= Bound at all frequencies. The
matrix generalization of this is H+H' >= 2*Bound

The property Bound is a real, scalar that quantifies the bound on the
frequency response of the uncertain object as described above.

Trailing Property/Value pairs are allowed in the construction.

H=ultidyn(’name’,iosize,’Property1’,Value1,’Property2’,Value2,...)

The property SampleStateDim is a positive integer, defining the state
dimension of random samples of the uncertain object when sampled
with usample. The default value is 1.

The property AutoSimplify controls how expressions involving
the uncertain matrix are simplified. Its default value is 'basic',
which means elementary methods of simplification are applied
as operations are completed. Other values for AutoSimplify are
'off', no simplification performed, and 'full' which applies
model-reduction-like techniques to the uncertain object.
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Examples Example 1

Create an ultidyn object with internal name 'H', dimensions 2-by-3,
norm bounded by 7.

H = ultidyn('H',[2 3],'Bound',7)
Uncertain GainBounded LTI Dynamics: Name H, 2x3, Gain Bound = 7

Example 2

Create a scalar ultidyn object with an internal name 'B', whose
frequency response has a real part greater than 2.5. Change the
SampleStateDim to 5, and plot the Nyquist plot of 30 random samples.

B = ultidyn('B',[1 1],'Type','PositiveReal','Bound',2.5)
Uncertain PositiveReal LTI Dynamics: Name B, 1x1, M+M' >= 2*(2.5)
B.SampleStateDim = 5;
nyquist(usample(B,30))
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See Also get | ureal | uss
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Purpose Create uncertain matrix

Syntax h = umat(M)
M = umat(A)

Description Uncertain matrices are rational expressions involving uncertain
elements of type ureal, ucomplex, or ucomplexm. Use uncertain
matrices for worst-case gain analysis and for building uncertain
state-space (uss) models.

Create uncertain matrices by creating uncertain elements and
combining them using arithmetic and matrix operations. For example:

p = ureal('p',1);
M = [0 p; 1 p^2]

creates a 2-by-2 uncertain matrix (a umat object) with the uncertain
parameter p.

The syntax M = umat(A) converts the double array A to a umat object
with no uncertainty.

Most standard matrix manipulations are valid on uncertain matrices,
including addition, multiplication, inverse, horizontal and vertical
concatenation. Specific rows/columns of an uncertain matrix can be
referenced and assigned also.

If M is a umat, then M.NominalValue is the result obtained by replacing
each uncertain element in M with its own nominal value.

If M is a umat, then M.Uncertainty is an object describing all the
uncertain elements in M. All element can be referenced and their
properties modified with this Uncertainty gateway. For instance, if B
is an uncertain real parameter in M, then M.Uncertainty.B accesses
the uncertain element B in M.

Examples Create 3 uncertain elements and then a 3-by-2 umat.

a = ureal('a',5,'Range',[2 6]);
b = ucomplex('b',1+j,'Radius',0.5);
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c = ureal('c',3,'Plusminus',0.4);
M = [a b;b*a 7;c-a b^2]

M is an uncertain matrix (umat object) with the uncertain parameters
a, b, and c.

View the properties of M with get

get(M)

The nominal value of M is the result when all atoms are replaced by
their nominal values.

M.NominalValue
ans =

5.0000 1.0000 + 1.0000i
5.0000 + 5.0000i 7.0000

-2.0000 0 + 2.0000i

Change the nominal value of a within M to 4. The nominal value of M
reflects this change.

M.Uncertainty.a.NominalValue = 4;
M.NominalValue
ans =

4.0000 1.0000 + 1.0000i
4.0000 + 4.0000i 7.0000

-1.0000 0 + 2.0000i

Get a random sample of M, obtained by taking random samples of the
uncertain atoms within M.

usample(M)
ans =

2.0072 0.8647 + 1.3854i
1.7358 + 2.7808i 7.0000
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1.3829 -1.1715 + 2.3960i

Select the 1st and 3rd rows, and the 2nd column of M. The result is a
2-by-1 umat, whose dependence is only on b.

M([1 3],2)

See Also ureal | ultidyn | ucomplex | ucomplexm | usample
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Purpose Plot multiple frequency response objects and doubles on same graph

Syntax uplot(G1)
uplot(G1,G2)
uplot(G1,Xdata,Ydata)
uplot(G1,Xdata,Ydata,...)
uplot(G1,linetype)
uplot(G1,linetype,G2,...)
uplot(G1,linetype,Xdata,Ydata,linetype)
uplot(type,G1,linetype,Xdata,Ydata,linetype)
H = uplot(G1)
H = uplot(G1,G2)
H = uplot(G1,Xdata,Ydata)
H = uplot(G1,Xdata,Ydata,...)
H = uplot(G1,linetype)
H = uplot(G1,linetype,G2,...)
H = uplot(G1,linetype,Xdata,Ydata,linetype)

Description uplot plots double and frd objects. The syntax is the same as the
MATLAB plot command except that all data is contained in frd
objects, and the axes are specified by type.

The (optional) type argument must be one of

Type Description

'iv,d' Data versus independent variable (default)

'iv,m' Magnitude versus independent variable

'iv,lm' log(magnitude) versus independent variable

'iv,p' Phase versus independent variable

'liv,m' Magnitude versus log(independent variable)

'liv,d' Data versus log(independent variable)

'liv,m' Magnitude versus log(independent variable)

'liv,lm' log(magnitude) versus log(independent variable)
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Type Description

'liv,p' Phase versus log(independent variable)

'r,i' Real versus imaginary (parametrize by independent
variable)

'nyq' Real versus imaginary (parametrize by independent
variable)

'nic' Nicholas plot

'bode' Bode magnitude and phase plot

The remaining arguments of uplot take the same form as the MATLAB
plot command. Line types (for example,'+', 'g-.', or '*r') can be
optionally specified after any frequency response argument.

There is a subtle distinction between constants and frd objects with
only one independent variable. A constant is treated as such across all
frequencies, and consequently shows up as a line on any graph with the
independent variable as an axis. A frd object with only one frequency
point always shows up as a point. You might need to specify one of the
more obvious point types in order to see it (e.g., '+', 'x’, etc.).

Examples Two SISO second-order systems are created, and their frequency
responses are calculated over different frequency ranges.

a1 = [-1,1;-1,-0.5];
b1 = [0;2]; c1 = [1,0]; d1 = 0;
sys1 = ss(a1,b1,c1,d1);
a2 = [-.1,1;-1,-0.05];
b2 = [1;1]; c2 = [-0.5,0]; d2 = 0.1;
sys2 = ss(a2,b2,c2,d2);
omega = logspace(-2,2,100);
sys1g = frd(sys1,omega);
omega2 = [ [0.05:0.1:1.5] [1.6:.5:20] [0.9:0.01:1.1] ];
omega2 = sort(omega2);
sys2g = frd(sys2,omega2);
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An frd object with a single frequency is also created. Note the
distinction between the frd object and the constant matrix in the
subsequent plots.

sys3 = rss(1,1,1);
rspot = frd(sys3,2);

The following plot uses the 'liv,lm' plot_type specification.

uplot('liv,lm',sys1g,'b-.',rspot,'r*',sys2g);
xlabel('log independent variable')
ylabel('log magnitude')
title('axis specification: liv,lm')

See Also bode | plot | nichols | nyquist | semilogx | semilogy | sigma
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Purpose Create uncertain real parameter

Syntax p = ureal('name',nominalvalue)
p = ureal('name',nominalvalue,'Property1',Value1,...
'Property2',Value2,...)

Description An uncertain real parameter is used to represent a real number whose
value is uncertain. Uncertain real parameters have a name (the Name
property), and a nominal value (NominalValue property).

The uncertainty (potential deviation from NominalValue) is described
(equivalently) in 3 different properties:

• PlusMinus: the additive deviation from NominalValue

• Range: the interval containing NominalValue

• Percentage: the percentage deviation from NominalValue

The Mode property specifies which one of these three descriptions
remains unchanged if the NominalValue is changed (the other two
descriptions are derived). The possible values for the Mode property are
'Range', 'Percentage' and 'PlusMinus'.

The default Mode is 'PlusMinus', and [-1 1] is the default value
for the 'PlusMinus' property. The range of uncertainty need not be
symmetric about NominalValue.

The property AutoSimplify controls how expressions involving
the uncertain matrix are simplified. Its default value is 'basic',
which means elementary methods of simplification are applied
as operations are completed. Other values for AutoSimplify are
'off'', no simplification performed, and 'full', which applies
model-reduction-like techniques to the uncertain object.

Examples Example 1

Create an uncertain real parameter and use get to display the
properties and their values. Create uncertain real parameter object a
with the internal name 'a' and nominal value 5.
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a = ureal('a',5)

Uncertain Real Parameter: Name a, NominalValue 5, variability = [-1 1]

get(a)

Name: 'a'

NominalValue: 5

Mode: 'PlusMinus'

Range: [4 6]

PlusMinus: [-1 1]

Percentage: [-20 20]

AutoSimplify: 'basic'

Note that the Mode is 'PlusMinus', and that the value of PlusMinus is
indeed [-1 1]. As expected, the range description of uncertainty is [4
6], while the percentage description of uncertainty is [-20 20].

Set the range to [3 9]. This leaves Mode and NominalValue unchanged,
but all three descriptions of uncertainty have been modified.

a.Range = [3 9];
get(a)

Name: 'a'
NominalValue: 5

Mode: 'PlusMinus'
Range: [3 9]

PlusMinus: [-2 4]
Percentage: [-40 80]

AutoSimplify: 'basic'

Example 2

Property/Value pairs can also be specified at creation.

b = ureal('b',6,'Percentage',[-30 40],'AutoSimplify','full');
get(b)

Name: 'b'
NominalValue: 6

Mode: 'Percentage'
Range: [4.2000 8.4000]
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PlusMinus: [-1.8000 2.4000]
Percentage: [-30.0000 40.0000]

AutoSimplify: 'full'

Note that Mode is automatically set to 'Percentage'.

Example 3

Specify the uncertainty in terms of percentage, but force Mode to
'Range'.

c = ureal('c',4,'Mode','Range','Percentage',25);
get(c)

Name: 'c'
NominalValue: 4

Mode: 'Range'
Range: [3 5]

PlusMinus: [-1 1]
Percentage: [-25 25]

AutoSimplify: 'basic'

See Also ucomplex | umat | uss
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Purpose Generate random samples of uncertain object

Syntax B = usample(A);
B = usample(A,N)
[B,SampleValues] = usample(A,N)
[B,SampleValues] = usample(A,Names,N)
[B,SampleValues] = usample(A,Names1,N1,Names2,N2,...)
[B,SampleValues] = usample(A,N,Wmax)
[B,SampleValues] = usample(A,Names,N,Wmax)

Description B = usample(A) substitutes a random sample of the uncertain objects
in A, returning a certain (i.e., not uncertain) array of size [size(A)].

B = usample(A,N) substitutes N random samples of the uncertain
objects in A, returning a certain (i.e., not uncertain) array of size
[size(A) N].

[B,SampleValues] = usample(A,N) additionally returns the specific
sampled values (as a Struct whose field names are the names of A's
uncertain elements) of the uncertain elements. Hence, B is the same as
usubs(A,SampleValues).

[B,SampleValues] = usample(A,Names,N) samples only the uncertain
elements listed in the Names variable (cell, or char array). If Names does
not include all the uncertain objects in A, then B will be an uncertain
object. Any entries of Names that are not elements of A are simply
ignored. Note that usample(A,fieldnames(A.Uncertainty),N) is
the same as usample(A,N).

[B,SampleValues] = usample(A,Names1,N1,Names2,N2,...) takes
N1 samples of the uncertain elements listed in Names1, and N2 samples
of the uncertain elements listed in Names2, and so on. size(B) will
equal [size(A) N1 N2 ...].

The scalar parameter Wmax in

[B,SampleValues] = usample(A,N,Wmax)
[B,SampleValues] = usample(A,Names,N,Wmax)
[B,SampleValues] = usample(A,Names,N,Wmax)
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affects how ultidyn elements within A are sampled, restricting the
poles of the samples. If A is a continuous-time uss or ufrd, then the
poles of sampled GainBounded ultidyn elements in SampleValues
will each have magnitude <= BW. If A is a discrete-time, then sampled
GainBounded ultidyn elements are obtained by Tustin transformation,
using BW/(2*TS) as the (continuous) pole magnitude bound. In this
case, BW should be < 1. If the ultidyn type is PositiveReal, then the
samples are obtained by bilinearly transforming (see “Normalizing
Functions for Uncertain Elements”) the GainBounded elements
described above.

Examples Example 1

Sample a real parameter and plot a histogram.

A = ureal('A',5);
Asample = usample(A,500);
size(A)
ans =

1 1
size(Asample)
ans =

1 1 500
class(Asample)
ans =
double
hist(Asample(:))
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Example 2

This example illustrates how to sample the open and closed-loop
response of an uncertain plant model for Monte Carlo analysis. You can
create two uncertain real parameters and an uncertain plant.

gamma = ureal('gamma',4);
tau = ureal('tau',.5,'Percentage',30);
P = tf(gamma,[tau 1]);

Create an integral controller based on nominal plant parameter.
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KI = 1/(2*tau.Nominal*gamma.Nominal);
C = tf(KI,[1 0]);

Now create an uncertain closed-loop system.

CLP = feedback(P*C,1);

You can sample the plant at 20 values (distributed uniformly about the
tau and gamma parameter cube).

[Psample1D,Values1D] = usample(P,20);
size(Psample1D)
20x1 array of state-space models
Each model has 1 output, 1 input, and 1 state.

You can sample the plant P at 10 values in the tau parameter and 15
values in the gamma parameter.

[Psample2D,Values2D] = usample(P,'tau',10,'gamma',15);
size(Psample2D)
10x15 array of state-space models
Each model has 1 output, 1 input, and 1 state.

You can plot the 1-D sampled plant step responses

subplot(2,1,1); step(Psample1D)
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You can also evaluate the uncertain closed-loop at the same values, and
plot the step response using usubs.

subplot(2,1,2); step(usubs(CLP,Values1D))
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Example 3

To see the effect of Wmax, create two ultidyn objects

A = ultidyn('A',[1 1]);
B = ultidyn('B',[1 1]);

Sample 10 instances of each, using a bandwidth limit of 1 rad/sec on A
and 20 rad/sec on B.

Npts = 10;
As = usample(A,Npts,1);
Bs = usample(B,Npts,20);

Plot 10-second step responses, for the two sample sets. Plot the slow
sample (from A ) in red, and the faster samples (from B.) in blue.

step(As,'r',Bs,'b--',10)
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See Also usample | usubs | ufind | ureal | ucomplex | ultidyn | umat |
ufrd | uss
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Purpose Generate random samples of uncertain variables

Syntax samples = usample(uvars,N)
samples = usample(uvars)
samples = usample(uvars,N,Wmax)

Description samples = usample(uvars,N) generates N random samples of the
uncertain variables in uvars. uvars is a structure that lists uncertain
variables (ureal, ucomplex or ultidyn) by name. You can automatically
obtain uvars for a Simulink model that contains Uncertain State Space
blocks using ufind. samples is an N-by-1 structure array whose field
names and values are the names and sample values of the uncertain
variables. Use this syntax, together with ufind, to generate random
samples for uncertain variables in Simulink models.

samples = usample(uvars) is equivalent to usample(uvars,1).

samples = usample(uvars,N,Wmax) specifies constraints, as described
in uss/usample, for sampling uncertain variables of type ultidyn in
uvars.

Examples Example 1

Generate random samples of uncertain variables:

% Create a structure that contains uncertain variables a and % b.
uvars = struct('a',ureal('a',5),'b',ultidyn('b',[2 3],'Bound',7))

% Use usample to generate random values of a and b.
samples = usample(uvars)

Example 2

Generate random samples of uncertain variables in a Simulink model:

1 Open the Simulink model.
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open_system('usim_model')

The model, as shown in the following figure, contains three Uncertain
State Space blocks named Unmodeled Plant Dynamics, Plant, and
Sensor Gain. These blocks depend on three uncertain variables
named input_unc, unc_pole and sensor_gain.

2 Use ufind to find all Uncertain State Space blocks and uncertain
variables in the model.

uvars = ufind('usim_model');

3 Use usample to generate random samples of unc_pole, input_unc,
and sensor_gain and simulate the closed-loop response.

for i=1:10;
uval = usample(uvars);
sim('usim_model',10);

end

The MultiPlot Graph block displays the simulated responses, as
shown in the following figure.
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Tutorials “Vary Uncertainty Values Using Individual Uncertain State Space
Blocks”

“Vary Uncertainty Values Across Multiple Uncertain State Space
Blocks”

Robustness Analysis in Simulink

How To “Simulate Uncertainty Effects”

See Also ufind | usubs | ureal | ucomplex | ultidyn | umat | ufrd | uss
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Purpose Helper function for USS System blocks to set "User-defined Uncertainty"
field or state of "Uncertainty value" menu

Note usimfill will be removed in a future release. Use ufind instead.

Syntax usimfill(ModelName,str)
usimfill(ModelName,'Uncertainty value','Nominal')
usimfill(ModelName,'Uncertainty value','User defined')

Description The command usimfill allows simple control of some parameters of
all USS System blocks in a Simulink model.

usimfill(ModelName,str) pushes the string in str into the
Uncertainty value name field of all USS System blocks in the
Simulink model specified by ModelName.

usimfill(ModelName,'Uncertainty value','Nominal') sets the
Uncertainty value pulldown menu to Nominal for all USS System
blocks in the Simulink model specified by ModelName. Only a limited
number of characters are needed to make this specification, so
usimfill(ModelName,'U','N') accomplishes the same effect.

usimfill(ModelName,'Uncertainty value','User defined') sets
the Uncertainty value pulldown menu to User defined for all USS
System blocks in the Simulink model specified by ModelName. Only a
limited number of characters are needed to make this specification, so
usimfill(ModelName,'U','U') accomplishes the same effect.

Examples See Robustness Analysis in Simulink for a more detailed example of
how to use usimfill.

Open the model file associated with the example.

open_system('usim_model');
unc_pole = ureal('unc_pole',-5,'Range',[-10 -4]);
plant = ss(unc_pole,5,1,1);
input_unc = ultidyn('input_unc',[1 1]);
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wt = makeweight(0.25,130,2.5);
sensor_gain = ureal('sensor_gain',1,'Range',[0.1 2]);

This has three USS System blocks. They are plant with a ureal
atom named unc_pole; input_unc which is a ultidyn object, and
sensor_gain which is a ureal atom.

Run usimfill on the model, filling in the field with the string
'newData'.

usimfill('usim_model','newData');

View all of the dialog boxes, and see that the string 'newData' has
been entered.

Run usimfill on the model, changing the Uncertainty Selection
to Nominal.

usimfill('usim_model','Uncertainty value','Nominal');

Similarly run usimfill on the model, changing the Uncertainty
Selection to User Specified Uncertainty.

usimfill('usim_model','Uncertainty value','User defined');

Now generate a random sample of the uncertain atoms, and run the
simulation

newData = usimsamp('usim_model',120);
sim('usim_model');

See Also usample | usiminfo | usimsamp | usubs
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Purpose Find USS System blocks within specified Simulink model and check
for consistency

Note usiminfo will be removed in a future release. Use ufind instead.

Syntax [cflags,allupaths,allunames,upaths,unames,csumchar]
= usiminfo(sname, silent)

Description The command usiminfo returns information regarding the locations of
all USS System blocks within a Simulink model and determines if these
conpatiblilty conditions are satisfied. It is possible to have uncertain
objects of the same name through out a Simulink model. The helper
functions usimsamp and usimfill assume that these are the same
uncertainty. Hence uncertain objects of the same name should have the
same object properties and Uncertainty value in the USS System
pull-down menu. usiminfo provides information about the uncertainty
in the Simulink diagram sname.

The following describes the input and outputs arguments of usiminfo:

Input
Arguments

Description

sname Simulink diagram name

silent Display inconsistencies between uncertain atoms,
when not empty. Default is empty.

Output
Arguments

Description

cflag Compatibility flag set to 1 if all uncertainties are
consistent, set to 0 if an uncertainty definition(s) is
consistent and set to –1 if common uncertainties in
different blocks have different Uncertainty value.

allupaths Path names of USS System blocks in the model (cell).
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Output
Arguments

Description

allunames Uncertainties names in Simulink model (cell).

upaths Path names associated with each allunames entry
(cell).

unames Uncertainty names associated with each allupaths
entry (cell).

csumchar Character array with description of uncertainties
and their associated block path names. Empty if
there is a conflict with unames.

See Also usample | usimfill | usimsamp | usubs
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Purpose Generate random instance of all uncertain atoms present in all USS
System blocks of Simulink model

Note usimsamp will be removed in a future release. Use usample
instead.

Syntax sample = usimsamp(ModelName)
sample = usimsamp(ModelName,BW)

Description The command usimsamp samples a Simulink model. Note that if
the model contains any USS System blocks, then the model can be
interpreted as an uncertain Simulink model. The sample generated by
usimsamp is a scalar structure, with fieldnames corresponding to the
uncertain atoms within all of the USS System blocks, and the values
are specific random samples of the atoms.

For ultidyn atoms, the magnitude of the sampled poles can be limited
using an optional second bandwidth argument, BW. See usample for
more information on this parameter.

Examples See Robustness Analysis in Simulink for a more detailed example of
how to use usimsamp.

Open the model file associated with the example.

open_system('usim_model');

This has 3 USS System blocks. They are plant with a ureal
atom named unc_pole; input_unc which is a ultidyn object, and
sensor_gain which is a ureal atom.

Run usimsamp on the model, yielding a structure as described above.

unc_pole = ureal('unc_pole',-5,'Range',[-10 -4]);
plant = ss(unc_pole,5,1,1);
input_unc = ultidyn('input_unc',[1 1]);
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wt = makeweight(0.25,130,2.5);
sensor_gain = ureal('sensor_gain',1,'Range',[0.1 2]);
data = usimsamp('usim_model')
data =

input_unc: [1x1 ss]
sensor_gain: 0.9935

unc_pole: -4.1308

See Also usample | usimfill | usiminfo | usubs
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Purpose Specify uncertain state-space models or convert LTI model to uncertain
state-space model

Syntax usys = uss(a,b,c,d)
usys = uss(a,b,c,d,Ts)
usys = uss(d)
usys = uss(a,b,c,d,Property,Value,...)
usys = uss(a,b,c,d,Ts,Property,Value,...)
usys = uss(sys)

Description uss creates uncertain state-space models (uss objects) or to convert
LTI models to the uss class.

usys = uss(a,b,c,d) creates a continuous-time uncertain state-space
object. The matrices a, b, c and d can be umat and/or double and/or
uncertain atoms. These are the 4 matrices associated with the linear
differential equation model to describe the system.

usys = uss(a,b,c,d,Ts) creates a discrete-time uncertain state-space
object with sampling time Ts.

usys = uss(d) specifies a static gain matrix and is equivalent to usys
= uss([],[],[],d).

Any of these syntaxes can be followed by property name/property value
pairs.

usys = uss(a,b,c,d,'P1',V1,'P2',V2,...) set the properties P1,
P2, ... to the values V1, V2, ...

usys = uss(sys) converts an arbitrary ss, tf or zpk model sys
to an uncertain state-space object without uncertainties. Both
usys.NominalValue and simplify(usys,'class') are the same as
ss(sys).

Examples You can first create two uncertain atoms and use them to create two
uncertain matrices. These four matrices can be packed together to
form a 1-output, 1-input, 2-state continuous-time uncertain state-space
system.
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p1 = ureal('p1',5,'Range',[2 6]);
p2 = ureal('p2',3,'Plusminus',0.4);
A = [-p1 0;p2 -p1];
B = [0;p2];
C = [1 1];
usys = uss(A,B,C,0);

In the second example, you can convert a not-uncertain tf model to
an uncertain state-space model without uncertainties. You can verify
the equality of the nominal value of the usys object and simplified
representation to the original system.

G = tf([1 2 3],[1 2 3 4]);
usys = uss(G)
USS: 3 States, 1 Output, 1 Input, Continuous System
isequal(usys.NominalValue,ss(G))
ans =

1
isequal(simplify(usys,'class'),ss(G))
ans =

1

See Also frd | ss
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Purpose Substitute given values for uncertain elements of uncertain objects

Syntax B = usubs(M,atomname1,value1,atomname2,value2,...)
B = usubs(M,{atomname1;atomname2;...},{value1;value2;...})
B = usubs(M,StrucArray)
B = usubs(M,atomname1,value1,atomname2,value2,...)
B = usubs(M,ElementName1,value1,ElementName2,value2,...)
B = usubs(M,S)
B = usubs(M,...,'-once')
B = usubs(M,...,'-batch')

Description Use usubs to substitute a specific value for an uncertain element of an
uncertain model object. The value can itself be uncertain. It needs to
be the correct size, but otherwise can be of any class, and can be an
array. Hence, the result can be of any class. In this manner, uncertain
elements act as symbolic placeholders, for which specific values (which
can also contain other placeholders too) can be substituted.

B = usubs(M,ElementName1,value1,ElementName2,value2,...) sets
the elements in M, identified by ElementName1, ElementName2, etc., to
the values in value1, value2, etc. respectively.

The names and values can also be grouped in cell arrays, as

B = usubs(M,ElementNames,values)

In this case, if the value cell is 1-by-1, then that value is substituted
for all the elements listed in ElementNames. For this situation, it is not
required that the value be in a cell array.

Any value can also be the string 'NominalValue' or 'Random' (or
only partially specified) in which case the nominal value, or a random
instance of the atom is used.

B = usubs(M,S) instantiates the uncertain elements of M to the values
specified in the structure S. The field names of S are the names of
the uncertain elements to replace. The values are the corresponding
replacement values. To provide several replacement values, make
S a struct array, where each struct contains one set of replacement
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values. A structure such as S typically comes from robustness analysis
commands such as robuststab, usample, or wcgain.

B = usubs(M,...,'-once') performs vectorized substitution in the
uncertain model array M. Each uncertain element is replaced by a single
value, but this value may change across the model array. To specify
different substitute values for each model in the array M, use:

• A cell array for each valueN that causes the uncertain element
ElementNameN in M(:,:,k) to be replaced by valueN(k). For
example, if M is a 2-by-3 array, then a 2-by-3 cell array value1
replaces ElementName1 of the model M(:,:,k) with the corresponding
value1(k).

• A struct array S that specifies one set of substitute values S(k) for
each model M(:,:,k).

Numeric array formats are also accepted for value1,value2,....
For example, value1 can be a 2-by-3 array of LTI models, a numeric
array of size [size(name1) 2 3], or a 2-by-3 matrix when the
uncertain element name1 is scalar-valued. The array sizes of M, S,
value1,value2,... must agree along non-singleton dimensions.
Scalar expansion takes place along singleton dimensions.

Vectorized substitution ('-once') is the default for model arrays when
no substitution method is specified.

B = usubs(M,...,'-batch') performs batch substitution in the
uncertain model array M. Each uncertain element is replaced by an
array of values, and the same values are used for all models in M. In
batch substitution, B is a model array of size [size(M) VS], where VS is
the size of the array of substitute values.

Examples Evaluate Uncertain Matrix for Multiple Values of Uncertain
Parameters

Evaluate an uncertain matrix at several different values of the
uncertain parameters of the matrix.

Create an uncertain matrix with two uncertain parameters.

3-444



usubs

a = ureal('a',5);
b = ureal('b',-3);
M = [a b];

Evaluate the matrix at four different combinations of values for the
uncertain parameters a and b.

B = usubs(M,'a',[1;2;3;4],'b',[10;11;12;13]);

This command evaluates M for the four different (a,b) combinations
(1,10), (2,11), and so on. Therefore, B is a 1-by-2-by-4 array of numeric
values containing the four evaluated values of M.

Evaluate Uncertain Matrix over Grid of Uncertain Parameters

Evaluate an uncertain matrix over a 3-by-4 grid of values of the
uncertain parameters of the matrix.

Create a 2-by-2 uncertain matrix with two uncertain parameters.

a = ureal('a',5);
b = ureal('b',-3);
M = [a b;0 a*b];

Build arrays of values for the uncertain parameters.

aval = [1;2;3;4];
bval = [10;20;30];
[as,bs] = ndgrid(aval,bval);

This command builds two 4-by-3 grids of values.

Evaluate M over the parameter grids A and B.

B = usubs(M,'a',as,'b',bs);

This command evaluates M for each four different combination of values
(A(k),B(k)) B is a 2-by-2-by-4-by-3 array of numeric values, which is a
4-by-3 array of values of M, i.e., M evaluated over the parameter grids.
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Instantiate Uncertain Parameter by Batch Substitution of
Parameter for Array of Values

Evaluate an array of uncertain models, substituting an array of values
for an uncertain parameter.

Create a 1-by-2 uncertain matrix with two uncertain parameters.

a = ureal('a',5);
b = ureal('b',-3);
M = [a b];

Replace a by each of the values 1, 2, 3, and 4.

Ma = usubs(M,'a',[1;2;3;4]);

This command returns a 4-by-1 array of 1-by-2 uncertain matrices that
contain one uncertain parameter b.

For each model in the array Ma, evaluate b at 10, 20, and 30.

B = usubs(Ma,'b',[10;20;30],'-batch');

The '-batch' flag causes usubs to evaluate each model in the array at
all three values of b. Thus B is a 4-by-3 array of M values.

The '-batch' syntax here yields the same result as the parameter grid
approach used in the previous example:

aval = [1;2;3;4];
bval = [10;20;30];
[as,bs] = ndgrid(aval,bval);
B = usubs(M,'a',as,'b',bs);

Instantiate Uncertain Parameter Using Different Value for
Each Entry in Array

Evaluate an array of uncertain models, substituting a different value
for the uncertain parameter in each entry in the array.

Create a 1-by-2 uncertain matrix with two uncertain parameters.
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a = ureal('a',5);
b = ureal('b',-3);
M = [a b];

Replace a by each of the values 1, 2, 3, and 4.

Ma = usubs(M,'a',[1;2;3;4]);

This command returns a 4-by-1 array of 1-by-2 uncertain matrices that
contain one uncertain parameter b.

For each model in the array Ma, evaluate b. Use b = 10 for the first
entry in the array, b = 20 for the second entry, and so on.

B = usubs(Ma,'b',{10;20;30;40},'-once');

The '-once' flag causes usubs to evaluate the first model in the array
using the first specified value for b, the second model for the second
specified value, etc.

Replace Uncertain Parameters with Values Returned by
usample

Replace the uncertain parameters in an uncertain models by values
specified in struct array form, as returned by usample.

This is useful, for example, when you have multiple uncertain models
that use the same set of parameters, and you want to evaluate all
models at the same parameter values.

Create two uncertain matrices that have the same uncertain
parameters, a and b.

a = ureal('a',5);
b = ureal('b',-3);
M1 = [a b];
M2 = [a b;0 a*b];

Generate some random samples of M1.
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[M1rand,samples] = usample(M1,5);

M1rand is an array of five values of M1, evaluated at randomly generated
values of a and b. These a and b values are returned in the struct
array samples.

Examine the struct array samples.

samples

samples =

5x1 struct array with fields:
a
b

The field names of samples correspond to the uncertain parameters
of M1. The values are the parameter values used to generate M1rand.
Because M2 has the same parameters, you can use this structure to
evaluate M2 at the same set of values.

M2rand = usubs(M2,samples);

This command returns a 1-by-5 array of instantiations of M2.

See Also gridureal | usample | simplify
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Purpose View tuning requirements; validate design against requirements

Syntax viewSpec(Req)
viewSpec(Req,T)
viewSpec(Req,T,Info)

Description viewSpec(Req) displays a graphical view of a TuningGoal tuning
requirement or vector of tuning requirements.

viewSpec(Req,T) plots the performance of a tuned control system T
against the tuning requirement.

viewSpec(Req,T,Info) uses the Info structure returned by systune
for correct scaling of MIMO open-loop requirements such as loop shapes
and stability margins.

Input
Arguments

Req - Tuning requirement to view or validate
TuningGoal requirement object | vector of TuningGoal objects

Tuning requirement to view or validate, specified as a TuningGoal
requirement object or vector of TuningGoal objects. TuningGoal
requirement objects include:

• TuningGoal.Tracking

• TuningGoal.Gain

• TuningGoal.WeightedGain

• TuningGoal.Variance

• TuningGoal.WeightedVariance

• TuningGoal.LoopShape

• TuningGoal.Margins

• TuningGoal.Poles

• TuningGoal.StableController
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T - Tuned control system
Generalized state-space model | slTunable interface object

Tuned control system, specified as a generalized state-space (genss)
model or an slTunable interface to a Simulink model.

The control system T is typically the result of using the tuning
requirement to tune control system parameters with systune.

Example: [T,fSoft,gHard,Info] = systune(T0,SoftReq,HardReq),
where T0 is a tunable genss model

Example: [T,fSoft,gHard,Info] =
systune(ST0,SoftReq,HardReq), where ST0 is a slTunable interface
object

Info - System information
data structure returned by systune

System information, specified as the data structure returned by
systune when you use that command to tune a control system. Use
Info when validating tuned MIMO systems, to ensure that viewSpec
correctly scales open-loop requirements such as loop shapes and
stability margins.

Examples Visualize Tuning Requirement as function of Frequency

Create a tuning requirement that constrains the response from a signal
'd' to a signal 'y' to roll off at 20 dB/decade at frequencies greater
than 1. The requirement also imposes disturbance rejection (maximum
gain of 1) in the frequency range [0,1].

gmax = frd([1 1 0.01],[0 1 100]);
Req = TuningGoal.MaxGain('du','u',gmax);

When you use a frequency response data (frd) model to sketch the
bounds of a gain constraint or a loop shape, the tuning requirement
interpolates the constraint to a smooth function of frequency.

Examine the interpolated gain constraint using viewSpec.
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viewSpec(Req)

The yellow region represents gain values that violate the tuning
requirement.

Validate Tuning Result Against Requirements

Validate a control system tuned with systune to determine whether
small violations of tuning requirements are acceptable.

When you tune a control system using tuning commands such as
systune, use viewSpec to compare the tuned result against the tuning
requirements. Doing so can help you determine whether the tuned
system comes sufficiently close to meeting your soft requirements.
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Create tracking, roll-off, stability margin, and disturbance rejection
requirements for tuning the following control system.

Req1 = TuningGoal.Tracking('az ref','az',1);
Req2 = TuningGoal.Gain('delta fin','delta fin',tf(25,[1 0]));
Req3 = TuningGoal.Margins('delta fin',7,45);
MaxGain = frd([2 200 200],[0.02 2 200]);
Req4 = TuningGoal.Gain('delta fin','az',MaxGain);

Tune the model using these tuning requirements.

open_system('rct_airframe2')

ST0 = slTunable('rct_airframe2','MIMO Controller');
addControl(ST0,'delta fin');

rng('default');
[ST1,fSoft,~,Info] = systune(ST0,[Req1,Req2,Req3,Req4]);

Final: Soft = 1.13, Hard = -Inf, Iterations = 55
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ST1 is a tuned version of the slTunable interface to the control system
that contains the tuned values of the tunable parameters of the MIMO
controller in the model.

Verify that the tuned system satisfies the margin requirement.

viewSpec(Req3,ST1,Info)

The yellow region denotes margins that do not satisfy the requirement.
The red trace represents the actual stability margin of the tuned system
ST1. The blue trace represents the margin used in the optimization
calculation, which is an upper bound on the actual margin. For ST1, the
margin requirement is satisfied at all frequencies.
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Validate the tracking and disturbance rejection requirements in the
frequency domain.

viewSpec([Req1,Req4],ST1,Info)
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When you provide a vector of requirements, viewSpec puts all the
requirements in a single figure window.

The first plot shows that the tuned system very nearly meets the
tracking requirement. The slight violation suggests that setpoint
tracking will perform close to expectations.

The second plot shows that the disturbance rejection levels off in
violation of the requirement at very low frequencies. There is also a
small bump near 35 rad/s, suggesting possible damped oscillations at
this frequency.

Use step and getIOTransfer to examine setpoint tracking and
disturbance rejection in the time domain.

See Also systune | genss | evalSpecslTunable.systune | slTunable |
TuningGoal.Tracking | TuningGoal.Gain | TuningGoal.Margins
| TuningGoal.WeightedGain | TuningGoal.Variance |
TuningGoal.WeightedVariance | TuningGoal.LoopShape |
TuningGoal.Poles | TuningGoal.StableController |

Concepts • “Generalized Models”
• “Performance and Robustness Specifications for looptune”
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Purpose Calculate bounds on worst-case gain of uncertain system

Syntax [wcg,wcu,info] = wcgain(sys)
[wcg,wcu,info] = wcgain(sys,opts)

Description The gain of an uncertain system generally depends on the values of
its uncertain elements. Here “gain” refers to the frequency response
magnitude. (For multi-input, multi-output systems, the “gain” refers
to the maximum singular value of the frequency response matrix.)
Determining the maximum gain over all allowable values of the
uncertain elements is referred to as a worst-case gain analysis. This
maximum gain is called the worst-case gain.

The following figure shows the frequency response magnitude of many
samples of an uncertain system model.

wcgain can perform two types of analysis on uncertain systems.
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• A max-over-frequency worst-case gain analysis yields the
frequency-dependent curve of maximum gain, shown in the figure
below.

This plot shows the maximum frequency-response magnitude at each
frequency due to the uncertain elements within the model.

• A peak-over-frequency worst-case gain analysis only aims to compute
the largest value of the frequency-response magnitude across all
frequencies. During such an analysis, large frequency ranges
can be quickly eliminated from consideration, thus reducing the
computation time.
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The default analysis performed by wcgain is max-over-frequency. You
can control which analysis is performed by using the MaxOverFrequency
option in the wcgainOptions options set.

Likewise, for arrays of uncertain models, the default wcgain analysis is
max-over-array. This means that wcgain computes the worst-case gain
over all models in the array. To compute the worst-case gain for each
model separately, set the MaxOverArray option in the wcgainOptions
options set to 'off'.

As with other uncertain-system analysis tools, only bounds on the
worst-case gain are computed. The exact value of the worst-case gain is
guaranteed to lie between these upper and lower bounds.

The computation used in wcgain is a frequency-domain calculation. If
the input system sys is an uncertain frequency response object (ufrd),
then the analysis is performed on the frequency grid within the ufrd.
If the input system sys is an uncertain state-space object (uss), then
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an appropriate frequency grid is generated (automatically), and the
analysis performed on that frequency grid. In all descriptions below, N
denotes the number of points in the frequency grid.

Basic Syntax

Suppose sys is an ufrd or uss with M uncertain elements. Calculate
the worst-case gain of sys.

[wcg,wcu] = wcgain(sys)

wcg is a structure with the following fields

Field Description

LowerBound Lower bound on worst-case gain, positive
scalar.

UpperBound Upper bound on worst-case gain, positive
scalar. If the nominal value of the uncertain
system is unstable, then maxgain.LowerBound
and maxgain.UpperBound equal ∞.

CriticalFrequency The critical value of frequency at which
maximum gain occurs (this is associated with
maxgain.LowerBound).

wcu is a structure containing values of uncertain elements that yield
the worst-case uncertainty. There are M field names, which are the
names of uncertain elements of sys. The value of each field is the
corresponding value of the uncertain element, such that when combined
lead to the gain value in maxgain.LowerBound. The command

norm(usubs(sys,maxgainunc),'inf')

shows the gain.

Examples Create a plant with nominal model of an integrator, and include additive
unmodeled dynamics uncertainty of a level of 0.4 (this corresponds to
100% model uncertainty at 2.5 rad/s).
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Design a proportional controller K1 that puts the nominal closed-loop
bandwidth at 0.8 rad/s. Roll off K1 at a frequency 25 times the nominal
closed-loop bandwidth. Repeat the design for a controller K2 that puts
the nominal closed-loop bandwidth at 2.0 rad/s. In each case, form the
closed-loop sensitivity function.

P = tf(1,[1 0]) + ultidyn('delta',[1 1],'bound',0.4);
BW1 = 0.8;
K1 = tf(BW1,[1/(25*BW1) 1]);
S1 = feedback(1,P*K1);
BW2 = 2.0;
K2 = tf(BW2,[1/(25*BW2) 1]);
S2 = feedback(1,P*K2);

Assess the worst-case gain of the closed-loop sensitivity function.

[maxgain1,wcunc1] = wcgain(S1);
[maxgain2,wcunc2] = wcgain(S2);

maxgain1, maxgain2

maxgain1 =

LowerBound: 1.5067
UpperBound: 1.5069

CriticalFrequency: 5.4742

maxgain2 =

LowerBound: 5.1037
UpperBound: 5.1045

CriticalFrequency: 10.3694

The maxgain variables indicate that controller K1 achieves better
worst-case performance than K2. Plot Bode magnitude plots of the
nominal closed-loop sensitivity functions, as well as the worst instances,
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using usubs to replace the uncertain element with the worst value
returned by wcgain.

bodemag(S1.Nom,'r--',usubs(S1,wcunc1),'r',S2.Nom,'b--',...
usubs(S2,wcunc2),'b')

legend('Nominal S1','Worst Case S1','Nominal S2','Worst Case S2',...
'Location','SouthEast')

Note that although the nominal closed-loop sensitivity resulting from
K2 is superior to that with K1, the worst-case behavior is much worse.
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Basic Syntax with Third Output Argument

A third output argument yields more specialized information, including
sensitivities of the worst-case gain to the uncertain element’s ranges
and frequency-by-frequency information.

[wcg,wcu,info] = wcgain(sys)

The third output argument info is a structure with the following fields

Field Description

Sensitivity A struct with M fields. Field names are names of uncertain
elements of sys. Values of fields are positive numbers, each
entry indicating the local sensitivity of the worst-case gain in
maxgain.LowerBound to all the individual uncertain element’s
uncertainty ranges. For instance, a value of 25 indicates that if
the uncertainty range is enlarged by 8%, then the worst-case gain
should increase by about 2%. If the Sensitivity property of the
wcgainOptions object is 'off', the values are NaN.

Frequency N-by-1 frequency vector associated with analysis.

BadUncertainValuesStructure of worst-case uncertainty values.

ArrayIndex 1-by-1 scalar matrix whose value is 1. In more complicated
situations (described later) the value of this field is dependent on
the input data.

Specifying Additional Options

Use wcgainOptions to specify additional options for the worst-case gain
computation. For example, you can turn the sensitivity computation
on or off, set the step-size in the sensitivity computation, adjust the
stopping criteria, or control behavior across frequency and array
dimensions. For instance, you can turn the sensitivity calculation off
as follows:

opt = wcgainOptions('Sensitivity','off');
[maxgain,maxgainunc,info] = wcgain(sys,opt)
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To compute the worst-case gain as a function of frequency, set the
MaxOverFrequency option to 'off'.

For a model array sys, set the MaxOverFrequency option to 'off' to
compute the worst-case gain for each individual model in the array.

See the wcgainOptions reference page for more information about
available options for wcgain.

Behavior on Notn-Uncertain Systems

wcgain can also be used on not-uncertain systems (e.g., ss and frd). If
sys is a single ss or frd, then the worst-case gain is simply the gain
of the system (identical to norm(sys,'inf')). However, if sys has
array dimensions, then the possible combinations of “peak-over” and
“max-over” can be used to customize the computation.

Algorithms The worst-case gain is guaranteed to be at least as large as LowerBound
(some value of allowable uncertain elements yield this gain – one
instance is returned in the structure maxgainunc. The frequency at
which the gain in LowerBound occurs is in CriticalFrequency. Lower
bounds for wcgain are computed using a power iteration on ultidyn,
ucomplex and ucomplexm uncertain atoms, (holding uncertain real
parameters fixed) and a coordinate aligned search on the uncertain real
parameters (while holding the complex blocks fixed).

Similarly, the worst-case gain is guaranteed to be no larger than
UpperBound. In other words, for all allowable modeled uncertainty, the
gain is provably less than or equal to UpperBound. These bounds are
derived using the upper bound for the structured singular value, which
is essentially optimally-scaled, small-gain theorem analysis. Upper
bounds are obtained by solving a semidefinite program. wcgain uses
branch and bound on the uncertain real parameters to tighten the lower
and upper bounds.

Limitations Because the calculation is carried out with a frequency grid, it is
possible (likely) that the true critical frequency is missing from the
frequency vector used in the analysis. This is similar to the problem
in robuststab. However, compared with robuststab, the problem
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in wcgain is less acute. Thought of as a function of problem data and
frequency, the worst-case gain is a continuous function (unlike the
robust stability margin, which in special cases is not; see Getting
Reliable Estimates of Robustness Margins). Hence, in worst-case
gain calculations, increasing the density of the frequency grid will
always increase the accuracy of the answers and in the limit, answers
arbitrarily close to the actual answers are obtainable with finite
frequency grids.

Alternatives Use wcgainplot to plot the worst-case gain of an uncertain system.

See Also mussv | norm | robuststab | wcgainOptions | wcsens | wcmargin |
wcgainplot | robustperf
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Purpose Option set for wcgain, wcgainplot, wcnorm, or wcsens

Syntax opt = wcgainOptions
opt = wcgainOptions(Name,Value,...)

Description opt = wcgainOptions returns the default option set for a wcgain
calculation. The commands wcgainplot, wcnorm, and wcsens also use
wcgain to compute their results. Use a wcgainOptions options set to
control options for those calculations.

opt = wcgainOptions(Name,Value,...) creates an option set with
the options specified by one or more Name,Value pair arguments.

Input
Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Sensitivity

Determines whether to compute the sensitivity of worst-case gain with
respect to each individual uncertain element.

Sensitivity is a string that takes the following values:

• 'on'— wcgain computes the sensitivity of the worst-case gain with
respect to each individual uncertain element. This provides an
indication of which elements are most problematic.

• 'off'— wcgain does not compute the sensitivity of the worst-case
gain with respect to each individual uncertain element.

Default: 'on'

VaryUncertainty
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Percentage variation of uncertainty for sensitivity calculations. The
sensitivity estimate uses a finite difference calculation.

Default: 25

LowerBoundOnly

Determines whether only the lower bound is computed.

LowerBoundOnly is a string that takes the following values:

• 'on'— wcgain only computes a lower bound on the worst-case gain

• 'off'— wcgain computes lower and upper bounds on the worst-case
gain

Default: 'off'

MaxOverFrequency

MaxOverFrequency is a string that takes the following values:

• 'on' — wcgain computes the worst-case H∞ norm (peak gain over
frequency)

• 'off' — wcgain computes the worst-case gain at each frequency
point

Default: 'on'

MaxOverArray

For uncertain model arrays, determines if worst-case gain is calculated
over entire array or individually for all models in array.

MaxOverArray is a string that takes the following values:

• 'on'— wcgain computes the worst-case gain over all models

• 'off' — wcgain computes the worst-case gain for each model
individually
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Default: 'on'

AbsTol

Absolute tolerance on computed bound.

The algorithm terminates if UpperBound-LowerBound <= max(AbsTol,
Reltol*UpperBound).

Relaxing tolerance speeds up the computation.

Default: 0.02

RelTol

Relative tolerance on computed bound.

The algorithm terminates if UpperBound-LowerBound <= max(AbsTol,
Reltol*UpperBound).

Default: 0.05

AbsMax

Absolute threshold for lower bound.

The algorithm terminates if LowerBound >= AbsMax + RelMax *
NominalGain.

Specify AbsMax and RelMax to terminate when the lower bound is large
enough compared to the nominal gain.

Default: 5

RelMax

Relative threshold for lower bound.

The algorithm terminates if LowerBound >= AbsMax + RelMax *
NominalGain.
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Specify AbsMax and RelMax to terminate when the lower bound is large
enough compared to the nominal gain.

Default: 20

NSearch

Number of lower bound searches at each frequency

Default: 2

Output
Arguments

opt

Option set containing the specified options for wcgain.

Examples Create an options set for wcgain with only the lower bound being
calculated and 5 lower bound searches at each frequency.

opt = wcgainOptions('LowerBoundOnly','on','Nsearch',5)

Alternatively, use dot notation to set the values of opt.

opt = wcgainOptions;
opt.LowerBound = 'on';
opt.NSearch = 5;

See Also wcgain | wcgainplot | wcnorm | wcsens
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Purpose Graphical worst-case gain analysis

Syntax wcgainplot(sys)
wcgainplot(sys,w)
wcgainplot(sys,...,options)

Description wcgainplot(sys) plots the nominal and worst-case gains of the
uncertain system sys as a function of frequency. For multi-input,
multi-output (MIMO) systems, gain refers to the largest singular value
of the frequency response matrix. (See sigma for more information
about singular values.) The plot includes:

• Nominal — nominal gain of sys

• Worst — the response falling within the uncertainty of sys that has
the highest peak gain

• Worst-case gain (lower bound) — the lowest worst-case gain at each
frequency

• Worst-case gain (upper bound) — the highest gain within the
uncertainty at each frequency

• Sampled Uncertainty — 20 responses randomly sampled from sys

wcgainplot(sys,w) focuses the plot on the frequencies specified by w.

• If w is a cell array {wmin,wmax}, wcgainplot plots the worst-case
gains in the range {wmin,wmax}.

• If w is an array of frequencies, wcgainplot plots the worst-case gains
at each frequency in the array.

wcgainplot(sys,...,options) uses the options set options to
specify additional options for the computation of the worst-case gains.
Use wcgainOptions to create the options set.

Input
Arguments

sys

Uncertain dynamic system.
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w

Frequencies of worst-case gain plots. Specify frequencies in
radians/TimeUnit, where TimeUnit is the time unit of sys.

• If w is a cell array {wmin,wmax}, wcgainplot plots the worst-case
gains in the range {wmin,wmax}.

• If w is an array of frequencies, wcgainplot plots the worst-case gains
at each frequency in the array.

options

Options set specifying additional options for the computation of the
worst-case gains. Use wcgainOptions to create the options set.

Examples Plot the worst-case gain of the system sys
s s

s s a




 

2

2
3

2
, where the

uncertain parameter a = 2 +/- 1. Plot the worst-case gain between
0.1 and 100 rad/s.

a = ureal('a',2)
sys = tf([1 3 0],[1 2 a]);
wcgainplot(sys,{.1 100})
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The Worst curve identifies the single response within the uncertainty
that yields the highest gain at any frequency. The Worst-case gain
(upper bound) curve is the envelope produced by finding the highest
gain within the uncertainty at each frequency.

Algorithms wcgainplot uses wcgain to compute the worst-case gains. Use the
options argument to wcgainplot to set options for the wcgain
algorithm.

wcgainplot uses usample to compute the Sampled Uncertainty curves.

See Also wcgain | wcgainOptions | usample | sigma
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Purpose Options object for use with wcgain, wcsens, and wcmargin

Note wcgopt will be removed in a future version. Use wcgainOptions
or wcmarginOptions instead.
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Purpose Worst-case disk stability margins of uncertain feedback loops

Syntax wcmarg = wcmargin(L)
wcmargi = wcmargin(p,c)
[wcmargi,wcmargo] = wcmargin(p,c)
wcmargi = wcmargin(p,c,opt)
[wcmargi,wcmargo] = wcmargin(p,c,opt)

Description Classical gain and phase margins define the allowable loop-at-a-time
variations in the nominal system gain and phase for which the feedback
loop retains stability.

An alternative to classical gain and phase margins is the disk margin.
The disk margin is the largest region for each channel such that for all
gain and phase variations inside the region the nominal closed-loop
system is stable. See the dmplot and loopmargin reference pages to
learn more about the algorithm.

Consider a system with uncertain elements. It is of interest to
determine the margin of each individual channel in the presence of
uncertainty. These margins are called worst-case margins. Worst-case
margin, wcmargin calculates the largest disk margin such that for
values of the uncertainty and all gain and phase variations inside the
disk, the closed-loop system is stable. The worst-case gain and phase
margin bounds are defined based on the balanced sensitivity function.
Hence, results from the worst-case margin calculation imply that the
closed-loop system is stable for a given uncertainty set and would
remain stable in the presence of an additional gain and phase margin
variation in the specified input/output channel.

wcmargL = wcmargin(L) calculates the combined worst-case input
and output loop-at-a-time gain/phase margins of the feedback loop
consisting of the loop transfer matrix L in negative feedback with an
identity matrix. L must be an uncertain system, uss or ufrd object.
If L is a uss object, the frequency range and number of points used to
calculate wcmargL are chosen automatically. Note that in this case,
the worst-case margins at the input and output are equal because an
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identity matrix is used in feedback. wcmarg is a NU-by-1 structure with
the following fields:

Field Description

GainMargin Guaranteed bound on worst-case, single-loop gain
margin at plant inputs. Loop-at-a-time analysis.

PhaseMargin Loop-at-a-time worst-case phase margin at plant
inputs. Units are degrees.

Frequency Frequency associated with the worst-case margin
(rad/s).

Sensitivity Struct with M fields. Field names are names of
uncertain elements of P and C. Values of fields
are positive numbers, which each entry indicating
the local sensitivity of the worst-case margins to
all the individual uncertain element’s uncertainty
ranges. For instance, a value of 50 indicates that if
the uncertainty range is enlarged by 8%, then the
worst-case gain should increase by about 4%. If the
Sensitivity property of the wcmarginOptions object
is 'off', the values are NaN.

[wcmargi,wcmargo] = wcmargin(P,C) calculates the combined
worst-case input and output loop-at-a-time gain/phase margins of the
feedback loop consisting of C in negative feedback with P. C should only
be the compensator in the feedback path, without reference channels,
if it is a 2-Dof architecture. That is, if the closed-loop system has a
2-Dof architecture the reference channel of the controller should be
eliminated resulting in a 1-Dof architecture as shown in the following
figure. Either P or C must be an uncertain system, uss or ufrd, or an
uncertain matrix, umat. If P and C are ss/tf/zpk or uss objects, the
frequency range and number of points used to calculate wcmargi and
wcmargo are chosen automatically.
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Basic Syntax

[wcmargi,wcmargo] = wcmargin(L)
[wcmargi,wcmargo] = wcmargin(P,C)

wcmargi and wcmargo are structures corresponding to the loop-at-a-time
worst-case, single-loop gain and phase margin of the channel. For
the single-loop transfer matrix L of size N-by-N, wcmargi is a N-by-1
structure. For the case with two input arguments, the plant model P
will have NY outputs and NU inputs and hence the controller C must
have NU outputs and NY inputs. wcmargi is a NU-by-1 structure with
the following fields:

Field Description

GainMargin Guaranteed bound on worst-case, single-loop gain
margin at plant inputs. Loop-at-a-time analysis.

PhaseMargin Loop-at-a-time worst-case phase margin at plant
inputs. Units are degrees.
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Field Description

Frequency Frequency associated with the worst-case margin
(rad/s).

Sensitivity Struct with M fields. Field names are names of
uncertain elements of P and C. Values of fields
are positive numbers, which each entry indicating
the local sensitivity of the worst-case margins to
all the individual uncertain element’s uncertainty
ranges. For instance, a value of 50 indicates that if
the uncertainty range is enlarged by 8%, then the
worst-case gain should increase by about 4%. If the
Sensitivity property of the wcmarginOptions object
is 'off', the values are NaN.

wcmargo is an N-by-1 structure for the single loop transfer matrix input
and wcmargo is an NY-by-1 structure when the plant and controller are
input. In both these cases, wcmargo has the same fields as wcmargi. The
worst-case bound on the gain and phase margins are calculated based
on a balanced sensitivity function.

[wcmargi,wcmargo] = wcmargin(L,opt) and

[wcmargi,wcmargo] = wcmargin(p,c,opt) specify options described
in opt. (See wcmarginOptions for more details on the options for
wcmargin.)

The sensitivity of the worst-case margin calculations to the individual
uncertain elements is selected using the options object opt. To compute
sensitivities, create a wcmarginOptions options object, and set the
Sensitivity property to 'on'.

Examples MIMO Loop-at-a-Time Margins

This example is designed to illustrate that loop-at-a-time margins
(gain, phase, and/or distance to –1) can be inaccurate measures of
multivariable robustness margins. Margins of the individual loops can
be very sensitive to small perturbations within other loops.
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The nominal closed-loop system considered here is shown as follows.

G and K are 2-by-2 multi-input/multi-output (MIMO) systems, defined
as
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Set α := 10, construct the nominal model G in state-space form, and
compute its frequency response.

a = [0 10;-10 0];
b = eye(2);
c = [1 8;-10 1];
d = zeros(2,2);
G = ss(a,b,c,d);
K = [1 -2;0 1];

The nominal plant was analyzed previously using the command. Based
on experimental data, the gain of the first input channel, b(1,1), is
found to vary between 0.97 and 1.06. The following statement generates
the updated uncertain model.

ingain1 = ureal('ingain1',1,'Range',[0.97 1.06]);
b = [ingain1 0;0 1];
Gunc = ss(a,b,c,d);

Because of differences between measured data and the plant model an
8% unmodeled dynamic uncertainty is added to the plant outputs.
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unmod = ultidyn('unmod',[2 2],'Bound',0.08);
Gmod = (eye(2)+unmod)*Gunc;
Gmodg = ufrd(Gmod,logspace(-1,3,60));

You can use the command wcmargin to determine the worst-case gain
and phase margins in the presences of the uncertainty.

[wcmi,wcmo] = wcmargin(Gmodg,K);

The worst-case analysis corresponds to maximum allowable disk
margin for all possible defined uncertainty ranges. The worst-case
single-loop margin analysis performed using wcmargin results in a
maximum allowable gain margin variation of 1.31 and phase margin
variations of ± 15.6 degs in the second input channel in the presence of
the uncertainties 'unmod' and 'ingain1'. wcmi(1)

ans =
GainMargin: [0.3613 2.7681]

PhaseMargin: [-50.2745 50.2745]
Frequency: 0.1000

Sensitivity: [1x1 struct]
wcmi(2)
ans =

GainMargin: [0.7585 1.3185]
PhaseMargin: [-15.6426 15.6426]

Frequency: 0.1000
Sensitivity: [1x1 struct]

Hence even though the second channel had infinite gain margin and
90 degrees of phase margin, allowing variation in both uncertainties,
'unmod' and 'ingain1' leads to a dramatic reduction in the gain and
phase margin.

You can display the sensitivity of the worst-case margin in the second
input channel to 'unmod' and 'ingain1' as follows:

wcmi(2).Sensitivity
ans =
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ingain1: 12.1865
unmod: 290.4557

The results indicate that the worst-case margins are not very sensitive
to the gain variation in the first input channel, 'ingain1', but very
sensitive to the LTI dynamic uncertainty at the output of the plant.

The worst-case single-loop margin at the output results in a maximum
allowable gain margin variation of 1.46 and phase margin variation
of ± 21.3 degs in the second output channel in the presence of the
uncertainties 'unmod' and 'ingain1'.

wcmo(1)
ans =

GainMargin: [0.2521 3.9664]
PhaseMargin: [-61.6995 61.6995]

Frequency: 0.1000
Sensitivity: [1x1 struct]

wcmo(2)
ans =

GainMargin: [0.6835 1.4632]
PhaseMargin: [-21.2984 21.2984]

Frequency: 0.1000
Sensitivity: [1x1 struct]

You can display the sensitivity of the worst-case margin in the second
output channel to 'unmod' and 'ingain1' as follows:

wcmo(2).Sensitivity
ans =

ingain1: 16.3435
unmod: 392.1320

The results are similar to the worst-case margins at the input.
However, the worst-case margins at the second output channel are
even more sensitive to the LTI dynamic uncertainty than the input
channel margins.
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See Also dmplot | loopsens | robuststab | usubs | wcgain | wcmarginOptions
| wcsens
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Purpose Option set for wcmargin

Syntax opt = wcmarginOptions
opt = wcmarginOptions(Name,Value,...)

Description opt = wcmarginOptions returns the default option set for wcmargin.

opt = wcmarginOptions(Name,Value,...) creates an option set with
the options specified by one or more Name,Value pair arguments.

Input
Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Sensitivity

Determines whether to compute the sensitivity of worst-case gain with
respect to each individual uncertain element.

Sensitivity is a string that takes the following values:

• 'on' — Sensitivity of the worst-case gain is computed with respect
to each individual uncertain element. This provides an indication of
which elements are most problematic.

• 'off'— wcmargin does not compute the sensitivity of the worst-case
gain with respect to each individual uncertain element.

Default: 'off'

AbsTol

Absolute tolerance on computed worst-case margin bounds.

The algorithm terminates if UpperBound-LowerBound <= max(AbsTol,
Reltol*UpperBound)
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Default: 0.02

RelTol

Relative tolerance on computed worst-case margin bounds.

The algorithm terminates if UpperBound-LowerBound <= max(AbsTol,
Reltol*UpperBound)

Default: 0.05

Output
Arguments

opt

Option set containing the specified options for wcmargin.

Examples Create an options set for wcmargin with an 0.01 and 0.03 as the absolute
and relative tolerances on the worst-case margin bounds, respectively.

opt = wcmarginOptions('AbsTol',0.01,'RelTol',0.03);

Alternatively, use dot notation to set the values of opt.

opt = wcmarginOptions;
opt.AbsTol = 0.01;
opt.RelTol = 0.03;

See Also wcmargin | wcgainOptions
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Purpose Worst-case norm of uncertain matrix

Syntax maxnorm = wcnorm(m)
[maxnorm,wcu] = wcnorm(m)
[maxnorm,wcu] = wcnorm(m,opts)
[maxnorm,wcu,info] = wcnorm(m)
[maxnorm,wcu,info] = wcnorm(m,opts)

Description The norm of an uncertain matrix generally depends on the values of its
uncertain elements. Determining the maximum norm over all allowable
values of the uncertain elements is referred to as a worst-case norm
analysis. The maximum norm is called the worst-case norm.

As with other uncertain-system analysis tools, only bounds on the
worst-case norm are computed. The exact value of the worst-case norm
is guaranteed to lie between these upper and lower bounds.

Basic syntax

Suppose mat is a umat or a uss with M uncertain elements. The results
of

[maxnorm,maxnormunc] = wcnorm(mat)

maxnorm is a structure with the following fields.

Field Description

LowerBound Lower bound on worst-case norm, positive scalar.

UpperBound Upper bound on worst-case norm, positive scalar.

maxnormunc is a structure that includes values of uncertain elements
and maximizes the matrix norm. There are M field names, which are
the names of uncertain elements of mat. The value of each field is
the corresponding value of the uncertain element, such that when
jointly combined, lead to the norm value in maxnorm.LowerBound. The
following command shows the norm:

norm(usubs(mat,maxnormunc))
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Basic syntax with third output argument

A third output argument provides information about sensitivities of the
worst-case norm to the uncertain elements ranges.

[maxnorm,maxnormunc,info] = wcgain(mat)

The third output argument info is a structure with the following fields:

Field Description

Sensitivity A struct with M fields. Fieldnames are names of
uncertain elements of sys. Field values are positive
numbers, each entry indicating the local sensitivity
of the worst-case norm in maxnorm.LowerBound to
all of the individual uncertain elements uncertainty
ranges. For instance, a value of 25 indicates that if
the uncertainty range is increased by 8%, then the
worst-case norm should increase by about 2%. If the
Sensitivity property of the wcgainOptions object is
'off', the values are NaN.

ArrayIndex 1-by-1 scalar matrix with the value of 1. In more
complicated situations (described later) the value of
this field depends on the input data.

Examples You can construct an uncertain matrix and compute the worst-case
norm of the matrix, as well as its inverse. Your objective is to accurately
estimate the worst-case, or the largest, value of the condition number of
the matrix.

a=ureal('a',5,'Range',[4 6]);
b=ureal('b',2,'Range',[1 3]);
b=ureal('b',3,'Range',[2 10]);
c=ureal('c',9,'Range',[8 11]);
d=ureal('d',1,'Range',[0 2]);
M = [a b;c d];
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Mi = inv(M);
[maxnormM] = wcnorm(M)
maxnormM =

LowerBound: 14.7199
UpperBound: 14.7327

[maxnormMi] = wcnorm(Mi)
maxnormMi =

LowerBound: 2.5963
UpperBound: 2.5979

The condition number of M must be less than the product of the two
upper bounds for all values of the uncertain elements making up M.
Conversely, the largest value of M condition number must be at least
equal to the condition number of the nominal value of M. Compute these
crude bounds on the worst-case value of the condition number.

condUpperBound = maxnormM.UpperBound*maxnormMi.UpperBound;
condLowerBound = cond(M.NominalValue);
[condLowerBound condUpperBound]
ans =

5.0757 38.2743

How can you get a more accurate estimate? Recall that the condition
number of an nxm matrix M can be expressed as an optimization, where
a free norm-bounded matrix Δ tries to align the gains of M and M–1

     

                        

κ σ
σ

( ) max ( )max

m

M M MCm m= Δ( )Δ∈
−

×
1

aax ( )Δ ≤ 1

If M is itself uncertain, then the worst-case condition number involves
further maximization over the possible values of M. Therefore, you can
compute the worst-case condition number of an uncertain matrix by
using a ucomplexm uncertain element, and then by using wcnorm to
carry out the maximization.

Create a 2-by-2 ucomplexm object, with nominal value equal to zero.
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Delta = ucomplexm('Delta',zeros(2,2));

The range of values represented by Delta includes 2-by-2 matrices with
the maximum singular value less than or equal to 1.

You can create the expression involving M, Delta and inv(M).

H = M*Delta*Mi;

Finally, consider the stopping criteria and call wcnorm. One stopping
criteria for wcnorm(H) is based on the norm of the nominal value of
H. During the computation, if wcnorm determines that the worst-case
norm is at least

ABadThreshold+MBadThreshold*norm(N.NominalValue)

then the calculation is terminated. In our case, since H.NominalValue
equals 0, the stopping criteria is governed by ABadThreshold. The
default value of ABadThreshold is 5. To keep wcnorm from prematurely
stopping, set ABadThreshold to 38 (based on our crude upper bound
above).

opt = wcgopt('ABadThreshold',38);
[maxKappa,wcu,info] = wcnorm(H,opt);
maxKappa
maxKappa =

LowerBound: 26.9629
UpperBound: 27.9926

You can verify that wcu makes the condition number as large as
maxKappa.LowerBound.

cond(usubs(M,wcu))
ans =

26.9629

Algorithms See wcgain
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See Also norm | wcgain | wcgainOptions
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Purpose Calculate worst-case sensitivity and complementary sensitivity
functions of plant-controller feedback loop

Syntax wcst = wcsens(L)
wcst = wcsens(L,type)
wcst = wcsens(L,opt)
wcst = wcsens(L,type,scaling)
wcst = wcsens(L,type,scaling,opt)
wcst = wcsens(P,C)
wcst = wcsens(P,C,type)
wcst = wcsens(P,C,opt)
wcst = wcsens(P,C,type,scaling)
wcst = wcsens(P,C,type,scaling,opt)

Description The sensitivity function, S = (I + L)–1, and the complementary
sensitivity function, T = L(I + L)–1, where L is the loop gain matrix
associated with the input, CP, or output, PC, are two transfer functions
related to the robustness and performance of the closed-loop system.
The multivariable closed-loop interconnection structure, shown below,
defines the input/output sensitivity, complementary sensitivity and loop
transfer functions.
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Description Equation

Input sensitivity (TFe1←d1) (I + CP)–1

Input complementary sensitivity (TFe2←d1) CP(I + CP)–1

Output sensitivity (TFe3←d2) (I + CP)–1

Output complementary sensitivity (–TFe4←d) PC(I + PC)–1

Input loop transfer function CP

Output loop transfer function PC

wcst = wcsens(L) calculates the worst-case sensitivity and
complementary sensitivity functions for the loop transfer matrix L
in feedback in negative feedback with an identity matrix. If L is
a uss object, the frequency range and number of points are chosen
automatically.

wcst = wcsens(P,C) calculates the worst-case sensitivity and
complementary sensitivity functions for the feedback loop C in negative
feedback with P. C should only be the compensator in the feedback
path, not any reference channels, if it is a 2-dof architecture (see
loopsens). If P and C are ss/tf/zpk or uss objects, the frequency range
and number of points are chosen automatically. wcst is a structure
with the following substructures:

Fields of wcst

Field Description

Si Worst-case input-to-plant sensitivity function

Ti Worst-case input-to-plant complementary sensitivity
function

So Worst-case output-to-plant sensitivity function

To Worst-case output-to-plant complementary sensitivity
function
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Fields of wcst (Continued)

Field Description

PSi Worst-case plant times input-to-plant sensitivity
function

CSo Worst-case compensator times output-to-plant
sensitivity function

Stable 1 if nominal closed loop is stable, 0 otherwise. NaN for
frd/ufrd objects.

Each sensitivity substructure is a structures with five fields
MaximumGain, BadUncertainValues, System, BadSystem,
Sensitivity derived from the outputs of wcgain.

Fields of Si, So, Ti, To, PSi, CSo

Field Description

MaximumGain struct with fields LowerBound, UpperBound and
CriticalFrequency. LowerBound and UpperBound are
bounds on the unweighted maximum gain of the uncertain
sensitivity function. CriticalFrequency is the frequency at
which the maximum gain occurs.

BadUncertainValues Struct, containing values of uncertain elements which
maximize the sensitivity gain. There are M fluidness, which
are the names of uncertain elements of sensitivity function.
The value of each field is the corresponding value of the
uncertain element, such that when jointly combined, lead to
the gain value in MaximumGain.LowerBound.

System Uncertain sensitivity function (ufrd or uss).

3-491



wcsens

Fields of Si, So, Ti, To, PSi, CSo (Continued)

Field Description

BadSystem Worst-case system based on the uncertain object values
in BadUncertainValues. BadSystem is defined as
BadSystem=usubs(System, BadUncertainValues).

Sensitivity Struct with M fields, fieldnames are names of uncertain
elements of system. Values of fields are positive numbers,
each entry indicating the local sensitivity of the maximum
gain to all of the individual uncertain elements uncertainty
ranges. For instance, a value of 50 indicates that if the
uncertainty range is enlarged by 8%, then the maximum gain
should increase by about 4%. If the 'Sensitivity' property
of the wcgopt object is 'off', the values are NaN.

wcst = wcsens(L,type) and wcst = wcsens(P,C,type) allows
selection of individual Sensitivity and Complementary Sensitivity
functions, type, as 'Si','Ti','So','To','PSi','CSo' corresponding
to the sensitivity and complementary sensitivity functions. Setting type
to 'S' or 'T' selects all sensitivity functions ('Si','So','PSi','CSo')
or all complementary sensitivity functions ('Ti','To'). Similarly,
setting type to 'Input' or 'Output' selects all input Sensitivity
functions ('Si','Ti','PSi') or all output sensitivity functions
('So,'To','CSo'). 'All' selects all six Sensitivity functions for
analysis (default). type may also be a cell containing a collection of
strings, i.e. 'Si','To', as well as a comma separated list.

wcst = wcsens(L,type,scaling) and wcst =
wcsens(P,C,type,scaling) adds a scaling to the worst-case
sensitivity analysis. scaling is either the character strings 'Absolute'
(default), 'Relative' or a ss/tf/zpk/frd object. The default scaling
'Absolute' calculates bounds on the maximum gain of the uncertain
sensitivity function. The 'Relative' scaling finds bounds on the
maximum relative gain of the uncertain sensitivity function. That
is, the maximum relative gain is the largest ratio of the worst-case
gain and the nominal gain evaluated at each frequency point in the
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analysis, Similarly if scaling is a ss/tf/zpk/frd object, bounds on the
maximum scaled gain of the uncertain sensitivity function are found.
If scaling is 'Relative'or a ss/tf/zpk/frd object, the worst-case
analysis peaks over frequency. If scaling is an object, its input/output
dimensions should be 1-by-1 or dimensions compatible with P and C.
type and scaling can also be combined in a cell array, e.g.

wcst = wcsens(P,C,{'Ti','So'},'Abs','Si','Rel','PSi',wt)

wcst = wcsens(P,C,opt) or wcst =
wcsens(P,C,type,scaling,opt) specifies options for the worst-case
gain calculation as defined by opt. (See wcgopt for more details on
the options for wcsens.)

The sensitivity of the worst-case sensitivity calculations to the
individual uncertain components can be determined using the options
object opt. To compute the sensitivities to the individual uncertain
components, create a wcgopt options object, and set the Sensitivity
property to 'on'.

opt = wcgopt('Sensitivity','on');
wcst = wcsens(P,C,opt)

Examples The following constructs a feedback loop with a first order plant and
a proportional-integral controller. The time constant is uncertain and
the model also includes an multiplicative uncertainty. The nominal
(input) sensitivity function has a peak of 1.09 at omega = 1.55 rad/sec.
Since the plant and controller are single-input / single-output, the
input/output sensitivity functions are the same.

delta = ultidyn('delta',[1 1]);
tau = ureal('tau',5,'range',[4 6]);
P = tf(1,[tau 1])*(1+0.25*delta);
C=tf([4 4],[1 0]);
looptransfer = loopsens(P,C);
Snom = looptransfer.Si.NominalValue;
norm(Snom,inf)
ans =
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1.0864

wcsens is then used to compute the worst-case sensitivity function
as the uncertainty ranges over its possible values. More information
about the fields in wcst.Si can be found in the wcgain help. The
badsystem field of wcst.Si contains the worst case sensitivity function.
This worst case sensitivity has a peak of 1.52 at omega = 1.02 rad/sec.
The maxgainunc field of wcst.Si contains the perturbation that
corresponds to this worst case sensitivity function.

wcst = wcsens(P,C)
wcst =

Si: [1x1 struct]
Ti: [1x1 struct]
So: [1x1 struct]
To: [1x1 struct]

PSi: [1x1 struct]
CSo: [1x1 struct]

Stable: 1
Swc = wcst.Si.BadSystem;
omega = logspace(-1,1,50);
bodemag(Snom,'-',Swc,'-.',omega);
legend('Nominal Sensitivity','Worst-Case Sensitivity',...

'Location','SouthEast')
norm(Swc,inf)
ans =

1.5075

For multi-input/multi-output systems the various input/output
sensitivity functions will, in general, be different.

References J. Shin, G.J. Balas, and A.K. Packard, “Worst case analysis of the X-38
crew return vehicle flight control system,” AIAA Journal of Guidance,
Dynamics and Control, vol. 24, no. 2, March-April 2001, pp. 261-269.

See Also loopsens | robuststab | usubs | wcgain | wcgopt | wcmargin
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Block Reference

MultiPlot Graph
Uncertain State Space
USS System



MultiPlot Graph

Purpose Plot multiple signals

Description The MultiPlot Graph block displays signals in a MATLAB figure.

If the input signal is a vector, then each component of the vector is
plotted in a separate axes. Lines are added to the axes in subsequent
simulations. The most recent data is plotted in red. Older plots cycle
through seven different colors. The block acts as a “hold-on, subplotter.”

There are two buttons in the toolbar menu. The eraser button clears the
data from all axes. The export button saves all the visible plot data to
the MATLAB workspace in a variable named by the dialog box entry
Variable for Export to Workspace. The format is a struct array,
following the behavior of a To Workspace block, using the “Structure,
With Time” save format.

The MultiPlot Graph block can be used in conjunction with the
Uncertain State Space block to visualize Monte Carlo and worst-case
simulation time responses.
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Dialog
Box
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Parameters t-min, t-max

The parameter entries t-min and t-max are the minimum and maximum
x-axis limits. t-min and t-max may be vectors corresponding to each
subplot.

y-min, y-max

The parameter entries y-min and y-max are the minimum and
maximum y-axis limits and similarly may be vector quantities.

Sample time

Sample time corresponds to the sample time at which to collect points.

Title

Specifies the title of the multiplot figure.

Variable for Export to Workspace

Variable name of the MATLAB object to contain all the visible plot
data exported to the MATLAB workspace. The format is a struct array,
following the behavior of a To Workspace block, using the "Structure,
With Time" save format.
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Purpose Specify uncertain system in Simulink

Description

The Uncertain State Space block lets you model parametric and
dynamic uncertainty in Simulink. The block accepts uncertain state
space (uss) models or any model that can be converted to uss, such as
umat, ureal and ultidyn objects.
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Dialog
Box
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Parameters Uncertain system variable (uss)

Linear state-space model with uncertainty (uss object). Specify an uss
object using one of the following:

• Function or expression that evaluates to an uss object. For example:

- ss(ureal('a',-5),5,1,1)

- wt*input_unc, where input_unc is an ultidyn object and wt and
input_unc are defined in the MATLAB workspace.

• Variable name, defined in the MATLAB workspace. For example,
unc_sys, where you define unc_sys = ss(ureal('a',-5),5,1,1) in
the workspace. This returns an uss object.

• Model type that can be converted to an uss object. For example:

- LTI models (tf, zpk and ss)

- Uncertain matrix (umat)

- Uncertain real parameters (ureal)

- Uncertain dynamics (ultidyn).

Uncertainty value (struct or [] to use nominal value)

Values of uncertain variables. The uss object that you enter in the
Uncertain system variable (uss) field depends on uncertain variables
(ureal or ultidyn object). Use this field to specify the values of these
uncertain variables to use for simulation or linearization. Specify the
value as one of the following:
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Value Description

[] Use nominal values.

Structure Use user-defined values. For example, struct('a',1)
specifies a value of 1 for the uncertain variable a.

Use ufind and usample to generate randomized values
of uncertain variables for Monte Carlo simulation.
For more information, see “Vary Uncertainty Values
Using Individual Uncertain State Space Blocks” and
“Vary Uncertainty Values Across Multiple Uncertain
State Space Blocks” in the Robust Control Toolbox
User’s Guide.

Initial states (nominal dynamics)

If the nominal value of the uncertain state variable,
unc_sys.NominalValue where unc_sys is the uncertain system
variable specified in the Uncertain system variable field, has states,
specify the initial condition for these states. The value defaults to zero.

Initial states (uncertain dynamics)

If the uncertain system contains some dynamic uncertainty (ultidyn),
specify the initial state of these dynamics. The value defaults to zero.

See Also ufind, usample, ulinearize, uss, umat, ureal, ultidyn

Tutorials Robustness Analysis in Simulink

Linearization of Simulink Models with Uncertainty

How To “Simulate Uncertainty Effects”

“Computing Uncertain State-Space Models from Simulink Models”
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Purpose Import uncertain systems into Simulink

Note USS System block will be removed in a future release. Use
Uncertain State Space block instead.

Description The USS System block accepts USS and UMAT containing ureal and
ultidyn uncertain objects, as well as ureal and ultidyn objects.
An instance of the uncertain system is used in the simulation or
linearization. Internally, USS models are converted to their state space
equivalent for evaluation.

Parameters USS system variable

The uncertain object (USS, UMAT, ureal, or ultidyn) is entered in
the USS system variable.

Initial states (nominal dynamics)

If the nominal value for the USS system variable has states, then
the initial condition for these states is entered in Initial states
(nominal dynamics).

Uncertainty value

The values for the uncertain elements are controlled by the Uncertainty
value menu. If Nominal is selected, then the nominal value of
the uncertain object is used. If you select User defined, then you
must enter a MATLAB structure in the User-defined uncertainty
(struct) dialog box. The field names of the structure should correspond
to the names of the uncertain atoms within the USS system variable,
while the values of the fields are the values used for the uncertain
objects (using the command usubs). If some of these values are SS
objects, then these states are referred to as uncertainty states.

The order of the uncertainty states is determined by the order of
atoms in the Uncertainty property of the USS system variable. The
state dimension is determined by the actual data in the User-defined
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uncertainty structure. Any extra fields in the User-defined
uncertainty structure are ignored.

User-defined uncertainty (struc)

If User defined is selected from the Uncertainty value pop-up
menu, then the structure data entered in User-defined uncertainty
(struct) must contain fields corresponding to every uncertain atom of
the USS system variable. Extra fields are ignored. usimsamp generates
a random instance of each atom in a Simulink model. It returns a
structure, suitable for entry in User-defined uncertainty (struct).

Initial states (uncertain dynamics)

The initial condition for the uncertainty states is entered in Initial
states (uncertain dynamics).

4-10



Index

IndexSymbols and Numerics
γ-iteration 3-140

A
ACC Benchmark plant 3-19
additive error 3-12 3-113 3-323
all-pass phase matrix 3-25
augmented plant 3-8

B
Balanced model truncation 3-12

balancmr 3-12
Schur method 3-323
schurmr 3-323
square root method 3-12

Balanced stochastic truncation 1-7 3-23
BST 3-23
bstmr 3-23

balancemr
additive error 3-12

balancemr, Hankel singular value 3-12
balancmr 3-12
Bamieh, B.A. 3-333
bilinear transform, frequency

continuous to continuous
pole-shifting transform 3-19

continuous to discrete
backward rectangular 3-17
forward rectangular 3-18
shifted Tustin 3-18

general bilinear 3-18
reverse transform 3-17

bisection algorithm 3-140
bstmr

Hankel singular value 3-23

C
Chiang, R. Y.

bilinear pole shifting 3-22
cmsclsyn 3-31
complementary sensitivity T 3-8
conic-sector 3-341

D
D-scalings

automatic prefitting 3-57
decomposition 3-152
Doyle, J. C.

state-space H∞ 3-112

F
fitmag 3-93
fitmaglp 3-93
Franklin, G. F. 3-21

G
gap metric 3-269
genphase 3-93
Glover, K.

state-space H2 3-112

H
H∞ -norm 3-341
H∞ optimal controller 3-137
H2 control synthesis 1-11 3-106
h2syn 3-106
Hankel minimum degree approximation

hankelmr 3-113
MDA 3-113
Zeroth Order Hankel MDA 3-117

Hankel Minimum Degree Approximation 3-113
Hankel singular value

hankelsv 3-120
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Hankel singular value based model
reduction 3-296
reduce 3-296

hankelmr
additive error 3-113
Hankel singular value 3-113

I
imp2ss 3-152

L
loop-shaping synthesis

loopsyn H∞ optimal method 3-197
LTR loop transfer recovery method 3-224
see also mixed-sensitivity 1-11 3-197

loopsyn 3-197
LQG loop tranfer-function recovery. See

ltrsyn 3-224
LQG optimal control 3-109
LTR control synthesis. See ltrsyn 3-224
ltrsyn 3-224

M
magfit 3-93
max entropy 3-140
mfilter 3-238
mixed-sensitivity synthesis

H∞ 3-234
H2 3-8

mixsyn 3-234
mktito 3-240
modal form realization 3-242
Modal form realization

modreal 3-242
mormalized coprime factor 3-262

ncfmr 3-262
multiplicative error bound 3-23
multivariable margins 3-184

N
ncfmargin 3-266
ncfsyn 3-266
normalized comprime factor (NCF) 3-266
normalized coprime factor

balanced model truncation 3-262
Left Coprime Factorization 3-262
Right Coprime Factorization 3-262

P
proper system 3-10

R
relative error 3-23

S
Safonov, M. G.

imaginy axis zeros H∞ 3-22
return difference matrix 3-111

schurmr
additive error 3-323
Hankel singular value 3-323

sdhfsyn 3-331
sectf 3-340
sensitivity S 3-8
Slow and fadt modes decomposition

slowfast 3-356
slow and fast modes decomposition 3-356
Slow and fast modes decomposition 3-356
slowfast 3-356
spectral factor 3-25
square root method 3-12
squaring-down prefilter 3-198
SVD system realization 3-152
System realization 3-152
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T
TITO (two-input-two-output) system 3-240

Z
Zames, G. 3-345
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